Skip to main content
Log in

Tailoring the Size and Shape of Colloidal Noble Metal Nanocrystals as a Valuable Tool in Catalysis

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The pivotal role of size and morphology-controlled nanocrystals in catalysis is a recognized fact nowadays. Among the strategies developed to adjust such features, colloidal synthetic approaches have been proven to be a valuable alternative through which noble metal nanocrystals with tailored sizes and morphologies can be formed upon proper selection of the experimental conditions. This review summarizes some of the main aspects to be considered in the synthesis of colloidal noble metal and includes representative examples of their catalytic applications by spotlighting the experimental conditions used in the synthesis and how the size and/or shape of the nanocrystals influence in the final catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Adapted with permission from [22]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Reprinted with permission from [167]

Fig. 9

Reprinted with permission from [169]

Similar content being viewed by others

References

  1. Sattler K (1986) Clusters of atoms. Phys Scr 1986:93–99

    Article  Google Scholar 

  2. Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  3. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395

    Article  CAS  Google Scholar 

  4. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181

    Article  Google Scholar 

  5. Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134:15607–15620

    Article  CAS  PubMed  Google Scholar 

  6. Nørskov JK, Bligaard T, Hvolbæk B et al (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163–2171

    Article  CAS  PubMed  Google Scholar 

  7. Xie W, Schlücker S (2018) Surface-enhanced Raman spectroscopic detection of molecular chemo- and plasmo-catalysis on noble metal nanoparticles. Chem Commun 54:2326–2336

    Article  CAS  Google Scholar 

  8. Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605

    Article  CAS  PubMed  Google Scholar 

  9. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    Article  CAS  Google Scholar 

  10. Gaffet E, Tachikart M, El Kedim O, Rahouadj R (1996) Nanostructural materials formation by mechanical alloying: morphologic analysis based on transmission and scanning electron microscopic observations. Mater Charact 36:185–190

    Article  CAS  Google Scholar 

  11. Mafuné F, Kohno JY, Takeda Y, Kondow T (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561

    Article  CAS  Google Scholar 

  12. Zhang J, Chaker M, Ma D (2017) Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J Colloid Interface Sci 489:138–149

    Article  CAS  PubMed  Google Scholar 

  13. Abedini A, Bakar AAA, Larki F et al (2016) Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Res Lett 11(1):287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4:1512–1524

    Article  CAS  Google Scholar 

  15. Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8:1237–1259

    Article  CAS  PubMed  Google Scholar 

  16. Xia Y, Xia X, Peng HC (2015) Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J Am Chem Soc 137:7947–7966

    Article  CAS  PubMed  Google Scholar 

  17. Fan F, Liu D, Wu Y et al (2008) Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951

    Article  CAS  PubMed  Google Scholar 

  18. Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  19. Wang Y, Il Choi S, Zhao X et al (2014) Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation. Adv Funct Mater 24:131–139

    Article  CAS  Google Scholar 

  20. Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res 46:1720–1730

    Article  CAS  PubMed  Google Scholar 

  21. Penn RL (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science (80-) 281:969–971

    Article  CAS  Google Scholar 

  22. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778

    Article  CAS  PubMed  Google Scholar 

  23. You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880–2904

    Article  CAS  PubMed  Google Scholar 

  24. Rodrigues TS, Zhao M, Yang TH et al (2018) Synthesis of colloidal metal nanocrystals: a comprehensive review on the reductants. Chem - A Eur J 24:16944–16963

    Article  CAS  Google Scholar 

  25. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Article  CAS  Google Scholar 

  26. Fievet F, Lagier J, Blin B et al (2002) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32–33:198–205

    Google Scholar 

  27. Navlani-García M, Martis M, Lozano-Castelló D et al (2015) Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catal Sci Technol 5:364–371

    Article  CAS  Google Scholar 

  28. Navlani-García M, Mori K, Nozaki A et al (2016) Screening of carbon-supported PdAg nanoparticles in the hydrogen production from formic acid. Ind Eng Chem Res 55:7612–7620

    Article  CAS  Google Scholar 

  29. Navlani-García M, Miguel-García I, Berenguer-Murcia Á et al (2016) Pd/zeolite-based catalysts for the preferential CO oxidation reaction: ion-exchange, Si/Al and Structure effect. Catal Sci Technol 6:2623–2632

    Article  CAS  Google Scholar 

  30. Quinson J, Inaba M, Neumann S et al (2018) Investigating particle size effects in catalysis by applying a size-controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol: case study of the oxygen reduction reaction on Pt. ACS Catal 8:6627–6635

    Article  CAS  Google Scholar 

  31. Wang Y, Zheng Y, Huang CZ, Xia Y (2013) Synthesis of Ag nanocubes 18-32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J Am Chem Soc 135:1941–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bock C, Paquet C, Couillard M et al (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126(25):8028–8037

    Article  CAS  PubMed  Google Scholar 

  33. Schrader I, Warneke J, Neumann S et al (2015) Surface chemistry of “unprotected” nanoparticles: a spectroscopic investigation on colloidal particles. J Phys Chem C 119:17655–17661

    Article  CAS  Google Scholar 

  34. Bonet F, Guéry C, Guyomard D et al (1999) Electrochemical reduction of noble metal compounds in ethylene glycol. Int J Inorg Mater 1:47–51

    Article  CAS  Google Scholar 

  35. Wu C, Mosher BP, Lyons K, Zeng T (2010) Reducing ability and mechanism for polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis. J Nanosci Nanotechnol 10:2342–2347

    Article  CAS  PubMed  Google Scholar 

  36. Huang H, Wang Y, Ruditskiy A et al (2014) Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 8:7041–7050

    Article  CAS  PubMed  Google Scholar 

  37. Niu Z, Li Y (2014) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26:72–83

    Article  CAS  Google Scholar 

  38. Mitzi DB, Feild CA, Harrison WTA, Guloy AM (1994) Direct measurement of colloidal forces using an atomic force microscope. Nature 367:532–538

    Article  Google Scholar 

  39. Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487

    Article  CAS  PubMed  Google Scholar 

  40. Saldías C, Bonardd S, Quezada C et al (2017) The role of polymers in the synthesis of noble metal nanoparticles: a review. J Nanosci Nanotechnol 17:87–114

    Article  CAS  PubMed  Google Scholar 

  41. Hirai H, Yakura N (2001) Protecting polymers in suspension of metal nanoparticles. Polym Adv Technol 12:724–733

    Article  CAS  Google Scholar 

  42. García-Aguilar J, Navlani-García M, Berenguer-Murcia Á et al (2016) Evolution of the PVP-Pd surface interaction in nanoparticles through the case study of formic acid decomposition. Langmuir 32:12110–12118

    Article  CAS  PubMed  Google Scholar 

  43. Miguel-García I, Navlani-García M, García-Aguilar J et al (2015) Capillary microreactors based on hierarchical SiO2 monoliths incorporating noble metal nanoparticles for the preferential oxidation of CO. Chem Eng J 275:71–78

    Article  CAS  Google Scholar 

  44. Domínguez-Domínguez S, Berenguer-Murcia A, Pradhan BK et al (2008) Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials. J Phys Chem C 112:3827–3834

    Article  CAS  Google Scholar 

  45. Krier JM, Komvopoulos K, Somorjai GA (2016) Cyclohexene and 1,4-cyclohexadiene hydrogenation occur through mutually exclusive intermediate pathways on platinum nanoparticles. J Phys Chem C 120:8246–8250

    Article  CAS  Google Scholar 

  46. Kweskin SJ, Rioux RM, Song H et al (2012) High-pressure adsorption of ethylene on cubic Pt nanoparticles and Pt(100) single crystals probed by in situ sum frequency generation vibrational spectroscopy. ACS Catal 2:2377–2386

    Article  CAS  Google Scholar 

  47. Giovanetti LJ, Ramallo-Lõpez JM, Foxe M et al (2012) Shape changes of Pt nanoparticles induced by deposition on mesoporous silica. Small 8:468–473

    Article  CAS  PubMed  Google Scholar 

  48. Ruiz-García C, Heras F, Calvo L et al (2018) Platinum and N-doped carbon nanostructures as catalysts in hydrodechlorination reactions. Appl Catal B Environ 238:609–617

    Article  CAS  Google Scholar 

  49. Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D (2010) Preferential oxidation of CO catalyzed by supported polymer-protected palladium-based nanoparticles. Appl Catal B Environ 98:161–170

    Article  CAS  Google Scholar 

  50. Collins G, Schmidt M, McGlacken GP et al (2014) Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals. J Phys Chem C 118:6522–6530

    Article  CAS  Google Scholar 

  51. Borodko Y, Habas SE, Koebel M et al (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV—Raman and FTIR. J Phys Chem B 110:23052–23059

    Article  CAS  PubMed  Google Scholar 

  52. Borodko Y, Humphrey SM, Tilley TD et al (2007) Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C 111:6288–6295

    Article  CAS  Google Scholar 

  53. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093

    Article  CAS  PubMed  Google Scholar 

  54. Evangelisti C, Panziera N, D’Alessio A et al (2010) New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal 272:246–252

    Article  CAS  Google Scholar 

  55. Evangelisti C, Panziera N, Pertici P et al (2009) Palladium nanoparticles supported on polyvinylpyridine: catalytic activity in Heck-type reactions and XPS structural studies. J Catal 262:287–293

    Article  CAS  Google Scholar 

  56. Qiu L, Liu F, Zhao L et al (2006) Evidence of a unique electron donor—acceptor property for platinum nanoparticles as studied by XPS. Langmuir 22:4480–4482

    Article  CAS  PubMed  Google Scholar 

  57. Xian J, Hua Q, Jiang Z et al (2012) Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 28:6736–6741

    Article  CAS  PubMed  Google Scholar 

  58. Kuwahara Y, Ando T, Kango H, Yamashita H (2017) Palladium nanoparticles encapsulated in hollow titanosilicate spheres as an ideal nanoreactor for one-pot oxidation. Chem—A Eur J 23:380–389

    Article  CAS  Google Scholar 

  59. Li Y, Zhang XL, Qiu R et al (2007) Chemical synthesis and silica encapsulation of NiPt nanoparticles. J Phys Chem C 111:10747–10750

    Article  CAS  Google Scholar 

  60. Chung S-H, Eom H-J, Kim M-S et al (2013) Highly dispersed ruthenium nanoparticle-embedded mesoporous silica as a catalyst for the production of < I>γ </I > -butyrolactone from succinic anhydride. J Nanosci Nanotechnol 13:7701–7706

    Article  CAS  PubMed  Google Scholar 

  61. Galeandro-Diamant T, Sayah R, Zanota ML et al (2017) Pt nanoparticles immobilized in mesostructured silica: a non-leaching catalyst for 1-octene hydrosilylation. Chem Commun 53:2962–2965

    Article  CAS  Google Scholar 

  62. Zhao J, Liu H, Ye S et al (2013) Half-encapsulated Au nanoparticles by nano iron oxide: promoted performance of the aerobic oxidation of 1-phenylethanol. Nanoscale 5:9546–9552

    Article  CAS  PubMed  Google Scholar 

  63. Martins J, Batail N, Silva S et al (2015) Improving the catalytic performances of metal nanoparticles by combining shape control and encapsulation. Appl Catal A Gen 504:504–508

    Article  CAS  Google Scholar 

  64. Guo X, Li L, Zhang X, Chen J (2015) Platinum nanoparticles encapsulated in nitrogen-doped mesoporous carbons as methanol-tolerant oxygen reduction electrocatalysts. ChemElectroChem 2:404–411

    Article  CAS  Google Scholar 

  65. Wei F, Cao C, Sun Y et al (2015) Highly active and stable palladium nanoparticles encapsulated in a mesoporous silica yolk-shell nanoreactor for Suzuki-Miyaura reactions. ChemCatChem 7:2475–2479

    Article  CAS  Google Scholar 

  66. Cobley CM, Chen J, Cho EC et al (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56

    Article  CAS  PubMed  Google Scholar 

  67. Li ZY (2018) Mesoscopic and microscopic strategies for engineering plasmon-enhanced raman scattering. Adv Opt Mater 6:1–37

    Google Scholar 

  68. Rodal-Cedeira S, Montes-García V, Polavarapu L et al (2016) Plasmonic Au@Pd nanorods with boosted refractive index susceptibility and SERS efficiency: a multifunctional platform for hydrogen sensing and monitoring of catalytic reactions. Chem Mater 28:9169–9180

    Article  CAS  Google Scholar 

  69. Zhang Z, Wang H, Chen Z et al (2018) Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications. Biosens Bioelectron 114:52–65

    Article  CAS  PubMed  Google Scholar 

  70. Xu Y, Chen L, Wang X et al (2015) Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 7:10559–10583

    Article  CAS  PubMed  Google Scholar 

  71. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126

    Article  CAS  PubMed  Google Scholar 

  72. Sarina S, Waclawik ER, Zhu H (2013) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15:1814–1833

    Article  CAS  Google Scholar 

  73. Freund HJ, Nilius N, Risse T, Schauermann S (2014) A fresh look at an old nano-technology: catalysis. Phys Chem Chem Phys 16:8148–8167

    Article  CAS  PubMed  Google Scholar 

  74. Freyschlag CG, Madix RJ (2011) Precious metal magic: catalytic wizardry. Mater Today 14:134–142

    Article  CAS  Google Scholar 

  75. Ahmadi TS, Wang ZL, Green TC et al (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science (80-) 272:1924–1925

    Article  CAS  Google Scholar 

  76. Ahmadi TS, Wang ZL, Henglein A, El-Sayed MA (1996) “Cubic” colloidal platinum nanoparticles. Chem Mater 8:1161–1163

    Article  CAS  Google Scholar 

  77. Tsung C-K, Kuhn JN, Huang W et al (2009) Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. Abstr Pap Am Chem Soc 237:819

    Google Scholar 

  78. Lee H, Habas SE, Kweskin S et al (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem—Int Ed 45:7824–7828

    Article  CAS  Google Scholar 

  79. Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P et al (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6:1080–1084

    Article  CAS  Google Scholar 

  80. Hernández J, Solla-Gullón J, Herrero E et al (2005) Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. J Phys Chem B 109:12651–12654

    Article  CAS  PubMed  Google Scholar 

  81. Farias MJS, Busó-Rogero C, Vidal-Iglesias FJ et al (2017) Mobility and oxidation of adsorbed CO on shape-controlled Pt nanoparticles in acidic medium. Langmuir 33:865–871

    Article  CAS  PubMed  Google Scholar 

  82. Arán-Ais RM, Solla-Gullón J, Gocyla M et al (2016) The effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction. Nano Energy 27:390–401

    Article  CAS  Google Scholar 

  83. Qian J, Shen M, Zhou S et al (2018) Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction. Mater Today 21:834–844

    Article  CAS  Google Scholar 

  84. Huo D, Ding H, Zhou S et al (2018) Facile synthesis of gold trisoctahedral nanocrystals with controllable sizes and dihedral angles. Nanoscale 10:11034–11042

    Article  CAS  PubMed  Google Scholar 

  85. Gao W, Hou Y, Hood ZD et al (2018) Direct in situ observation and analysis of the formation of palladium nanocrystals with high-index facets. Nano Lett 18:7004–7013

    Article  CAS  PubMed  Google Scholar 

  86. Zhang H, Jin M, Xia Y (2012) Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew Chem—Int Ed 51:7656–7673

    Article  CAS  Google Scholar 

  87. Strasser P, Gliech M, Kuehl S, Moeller T (2018) Electrochemical processes on solid shaped nanoparticles with defined facets. Chem Soc Rev 47:715–735

    Article  CAS  PubMed  Google Scholar 

  88. Navin JK, Grass ME, Somorjai GA, Marsh AL (2009) Characterization of colloidal platinum nanoparticles by MALDI-TOF mass spectrometry. Anal Chem 81:6295–6299

    Article  CAS  Google Scholar 

  89. Rioux RM, Song H, Hoefelmeyer JD et al (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192–2202

    Article  CAS  PubMed  Google Scholar 

  90. Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348

    Article  CAS  Google Scholar 

  91. Manbeck KA, Musselwhite NE, Carl LM et al (2010) Factors affecting activity and selectivity during cyclohexanone hydrogenation with colloidal platinum nanocatalysts. Appl Catal A Gen 384:58–64

    Article  CAS  Google Scholar 

  92. Galeandro-Diamant T, Zanota ML, Sayah R et al (2015) Platinum nanoparticles in suspension are as efficient as Karstedt’s complex for alkene hydrosilylation. Chem Commun 51:16194–16196

    Article  CAS  Google Scholar 

  93. Liu Z, Shamsuzzoha M, Ada ET et al (2007) Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sources 164:472–480

    Article  CAS  Google Scholar 

  94. Kang W, Li R, Wei D et al (2015) CTAB-reduced synthesis of urchin-like Pt-Cu alloy nanostructures and catalysis study towards the methanol oxidation reaction. RSC Adv 5:94210–94215

    Article  CAS  Google Scholar 

  95. Ma H, Wang H, Na C (2015) Microwave-assisted optimization of platinum-nickel nanoalloys for catalytic water treatment. Appl Catal B Environ 163:198–204

    Article  CAS  Google Scholar 

  96. Muraza O, Rebrov EV, Berenguer-Murcia A et al (2009) Selectivity control in hydrogenation reactions by nanoconfinement of polymetallic nanoparticles in mesoporous thin films. Appl Catal A Gen 368:87–96

    Article  CAS  Google Scholar 

  97. Mourdikoudis S, Chirea M, Zanaga D et al (2015) Governing the morphology of Pt-Au heteronanocrystals with improved electrocatalytic performance. Nanoscale 7:8739–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rogers SM, Catlow CRA, Chan-Thaw CE et al (2015) Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol. ACS Catal 5:4377–4384

    Article  CAS  Google Scholar 

  99. Rebrov EV, Berenguer-Murcia A, Johnson BFG, Schouten JC (2008) Gold supported on mesoporous titania thin films for application in microstructured reactors in low-temperature water-gas shift reaction. Catal Today 138:210–215

    Article  CAS  Google Scholar 

  100. Bhosale MA, Gupta SSR, Bhanage BM (2016) Size controlled synthesis of gold nanostructures using ketones and their catalytic activity towards reduction of p-nitrophenol. Polyhedron 120:96–102

    Article  CAS  Google Scholar 

  101. Fkiri A, Mezni A, Robert C et al (2017) Synthesis of monodisperse gold octahedra in polyol: selective oxidation of stilbene. Colloids Surfaces A Physicochem Eng Asp 530:85–92

    Article  CAS  Google Scholar 

  102. Tran M, DePenning R, Turner M, Padalkar S (2016) Effect of citrate ratio and temperature on gold nanoparticle size and morphology. Mater Res Express 3:105027

    Article  CAS  Google Scholar 

  103. Suchomel P, Kvitek L, Prucek R et al (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  104. Lee YW, Kim M, Kim ZH, Han SW (2009) One-step synthesis of Au @ Pd core—shell nanooctahedron. J Am Chem Soc 131:17036–17037

    Article  CAS  PubMed  Google Scholar 

  105. Gandarias I, Miedziak PJ, Nowicka E et al (2015) Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8:473–480

    Article  CAS  PubMed  Google Scholar 

  106. Metin Ö, Sun X, Sun S (2013) Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 5:910–912

    Article  CAS  PubMed  Google Scholar 

  107. Liu JH, Wang AQ, Chi YS et al (2005) Synergistic effect in an Au-Ag alloy nanocatalyst: cO oxidation. J Phys Chem B 109:40–43

    Article  CAS  PubMed  Google Scholar 

  108. Tsuji M, Matsuo R, Jiang P, Miyamae N, Ueyama D, Nishio M, Hikino S, Kumagae H, Kamarudin KSN, Tang X-L (2008) Shape-dependent evolution of Au@Ag core–shell nanocrystals by PVP-assisted N,N-dimethylformamide reduction. Cryst Growth Des 8:2528–2536

    Article  CAS  Google Scholar 

  109. Navlani-García M, Mori K, Nozaki A et al (2016) Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect 1:1879–1886

    Article  CAS  Google Scholar 

  110. Xiao C, Ding H, Shen C et al (2009) Shape-controlled synthesis of palladium nanorods and their magnetic properties. J Phys Chem C 113:13466–13469

    Article  CAS  Google Scholar 

  111. Li Y, Boone E, El-Sayed MA (2002) Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18:4921–4925

    Article  CAS  Google Scholar 

  112. Lim B, Jiang M, Camargo PHC et al (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science (80-) 324:1302–1305

    Article  CAS  Google Scholar 

  113. Zhang H, Jin M, Liu H et al (2011) Facile synthesis of Pd-Pt Alloy nanocages and their enhanced performance for preferential oxidation of co in excess hydrogen. ACS Nano 5:8212–8222

    Article  CAS  PubMed  Google Scholar 

  114. Menezes WG, Altmann L, Zielasek V et al (2013) Bimetallic Co-Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. J Catal 300:125–135

    Article  CAS  Google Scholar 

  115. Liu S, Li Y, Ta N et al (2018) Fabrication of palladium-copper nanoparticles with controllable size and chemical composition. J Colloid Interface Sci 526:201–206

    Article  CAS  PubMed  Google Scholar 

  116. Okhlopkova LB, Kerzhentsev MA, Tuzikov FV et al (2012) Palladium-Zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2coating on inner surface of fused silica capillary. J Nanoparticle Res 14:1088

    Article  CAS  Google Scholar 

  117. Kang X, Miao K, Guo Z et al (2018) PdRu alloy nanoparticles of solid solution in atomic scale: size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol. J Catal 364:183–191

    Article  CAS  Google Scholar 

  118. Shen J, Scott RWJ, Hayes RE, Semagina N (2015) Structural evolution of bimetallic Pd-Ru catalysts in oxidative and reductive applications. Appl Catal A Gen 502:350–360

    Article  CAS  Google Scholar 

  119. Lu P, Teranishi T, Asakura K et al (1999) Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene. J Phys Chem B 103:9673–9682

    Article  CAS  Google Scholar 

  120. Cooper P, John HJT (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 55:55–75

    Google Scholar 

  121. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  CAS  PubMed  Google Scholar 

  122. Sau TK, Rogach AL, Jäckel F et al (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  CAS  PubMed  Google Scholar 

  123. Liu Z, Qi J, Liu M et al (2018) Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew Chem—Int Ed 57:11678–11682

    Article  CAS  Google Scholar 

  124. Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem Mater 22:6310–6318

    Article  CAS  Google Scholar 

  125. Wrasman CJ, Boubnov A, Riscoe AR et al (2018) Synthesis of colloidal Pd/Au dilute alloy nanocrystals and their potential for selective catalytic oxidations. J Am Chem Soc 140:12930–12939

    Article  CAS  PubMed  Google Scholar 

  126. Duan S, Du Z, Fan H, Wang R (2018) Nanostructure optimization of platinum-based nanomaterials for catalytic applications. Nanomaterials 8:949

    Article  CAS  PubMed Central  Google Scholar 

  127. Kang Y, Li M, Cai Y et al (2013) Heterogeneous catalysts need not Be so “heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J Am Chem Soc 135:2741–2747

    Article  CAS  PubMed  Google Scholar 

  128. Lai J, Guo S (2017) Design of ultrathin Pt-based multimetallic nanostructures for efficient oxygen reduction electrocatalysis. Small 13:1–15

    Google Scholar 

  129. Isaifan RJ, Ntais S, Couillard M, Baranova EA (2015) Size-dependent activity of Pt/yttria-stabilized zirconia catalyst for ethylene and carbon monoxide oxidation in oxygen-free gas environment. J Catal 324:32–40

    Article  CAS  Google Scholar 

  130. Chen C, Chen F, Zhang L et al (2015) Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem Commun 51:5936–5938

    Article  CAS  Google Scholar 

  131. An K, Alayoglu S, Musselwhite N et al (2014) Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane. J Am Chem Soc 136:6830–6833

    Article  CAS  PubMed  Google Scholar 

  132. Sapi A, Liu F, Cai X et al (2014) Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled pt nanoparticles: striking differences in kinetics and mechanism. Nano Lett 14:6727–6730

    Article  CAS  PubMed  Google Scholar 

  133. Callison J, Subramanian ND, Rogers SM et al (2018) Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. Appl Catal B Environ 238:618–628

    Article  CAS  Google Scholar 

  134. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem—Int Ed 48:60–103

    Article  CAS  Google Scholar 

  135. Fereshteh Z, Rojaee R, Sharifnabi A (2016) Effect of different polymers on morphology and particle size of silver nanoparticles synthesized by modified polyol method. Superlatt Microstruct 98:267–275

    Article  CAS  Google Scholar 

  136. Long NV, Ohtaki M, Hien TD et al (2011) Synthesis and characterization of polyhedral and quasi-sphere non-polyhedral Pt nanoparticles: effects of their various surface morphologies and sizes on electrocatalytic activity for fuel cell applications. J Nanoparticle Res 13:5177–5191

    Article  CAS  Google Scholar 

  137. Mistry H, Behafarid F, Zhou E et al (2014) Shape-dependent catalytic oxidation of 2-butanol over Pt nanoparticles supported on γ-Al2O3. ACS Catal 4:109–115

    Article  CAS  Google Scholar 

  138. Huang X, Tang S, Zhang H et al (2009) Controlled formation of concave tetrahedral/trigonal bipyramidal palladium. J Am Chem Soc 131:13916–13917

    Article  CAS  PubMed  Google Scholar 

  139. Yu T, Kim DY, Zhang H, Xia Y (2011) Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew Chem—Int Ed 50:2773–2777

    Article  CAS  Google Scholar 

  140. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375

    Article  CAS  PubMed  Google Scholar 

  141. Donoeva B, de Jongh PE (2018) Colloidal Au catalyst preparation: selective removal of polyvinylpyrrolidone from active Au sites. ChemCatChem 10:989–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Villa A, Dimitratos N, Chan-Thaw CE et al (2016) Characterisation of gold catalysts. Chem Soc Rev 45:4953–4994

    Article  CAS  PubMed  Google Scholar 

  143. Wall MA, Harmsen S, Pal S et al (2017) Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mater 29:1605622

    Article  CAS  Google Scholar 

  144. Haider P, Kimmerle B, Krumeich F et al (2008) Gold-catalyzed aerobic oxidation of benzyl alcohol: effect of gold particle size on activity and selectivity in different solvents. Catal Lett 125:169–176

    Article  CAS  Google Scholar 

  145. Linares N, Canlas CP, Garcia-Martinez J, Pinnavaia TJ (2014) Colloidal gold immobilized on mesoporous silica as a highly active and selective catalyst for styrene epoxidation with H2O2. Catal Commun 44:50–53

    Article  CAS  Google Scholar 

  146. Sun KQ, Luo SW, Xu N, Xu BQ (2008) Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal Lett 124:238–242

    Article  CAS  Google Scholar 

  147. Panigrahi S, Basu S, Praharaj S et al (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596–4605

    Article  CAS  Google Scholar 

  148. Kaur R, Pal B (2012) Size and shape dependent attachments of Au nanostructures to TiO2for optimum reactivity of Au-TiO2photocatalysis. J Mol Catal A: Chem 355:39–43

    Article  CAS  Google Scholar 

  149. Nanospheres TG, Kundu S, Lau S, Liang H (2009) Shape-controlled catalysis by cetyltrimethylammonium bromide shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold. J Phys Chem 113:5150–5156

    Google Scholar 

  150. Gupta SSR, Kantam ML, Bhanage BM (2018) Shape-selective synthesis of gold nanoparticles and their catalytic activity towards reduction of p-nitroaniline. Nano-Struct Nano-Objects 14:125–130

    Article  CAS  Google Scholar 

  151. Zhang J, Langille MR, Personick ML et al (2010) Concave cubic gold nanocrystals with high-index facets. J Am Chem Soc 132:14012–14014

    Article  CAS  PubMed  Google Scholar 

  152. Burrows ND, Harvey S, Idesis FA, Murphy CJ (2017) Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir 33:1891–1907

    Article  CAS  PubMed  Google Scholar 

  153. Wu Y, Wen M, Navlani-García M et al (2017) Palladium nanoparticles supported on titanium doped graphitic carbon nitride for formic acid dehydrogenation. Chem—An Asian J 12:860–867

    Article  CAS  Google Scholar 

  154. Navlani-García M, Salinas-Torres D, Mori K et al (2019) Insights on palladium decorated nitrogen-doped carbon xerogels for the hydrogen production from formic acid. Catal Today 324:90–96

    Article  CAS  Google Scholar 

  155. Monai M, Montini T, Gorte RJ, Fornasiero P (2018) Catalytic oxidation of methane: Pd and beyond. Eur J Inorg Chem 2018:2884–2893

    Article  CAS  Google Scholar 

  156. Balcells D, Nova A (2018) Designing Pd and Ni catalysts for cross-coupling reactions by minimizing off-cycle species. ACS Catal 8:3499–3515

    Article  CAS  Google Scholar 

  157. Le Bras J, Muzart J (2018) Palladium-catalyzed domino dehydrogenation/heck-type reactions of carbonyl compounds. Adv Synth Catal 360:2411–2428

    Article  CAS  Google Scholar 

  158. Wang D, Weinstein AB, White PB, Stahl SS (2018) Ligand-promoted palladium-catalyzed aerobic oxidation reactions. Chem Rev 118:2636–2679

    Article  CAS  PubMed  Google Scholar 

  159. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931

    Article  CAS  Google Scholar 

  160. Yin L, Liebscher J (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    Article  CAS  PubMed  Google Scholar 

  161. Gao D, Zhou H, Wang J et al (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137:4288–4291

    Article  CAS  PubMed  Google Scholar 

  162. Johnson JA, Makis JJ, Marvin KA et al (2013) Size-dependent hydrogenation of p-nitrophenol with Pd nanoparticles synthesized with poly(amido)amine dendrimer templates. J Phys Chem C 117:22644–22651

    Article  CAS  Google Scholar 

  163. Hokenek S, Kuhn JN (2012) Methanol decomposition over palladium particles supported on silica: role of particle size and co-feeding carbon dioxide on the catalytic properties. ACS Catal 2:1013–1019

    Article  CAS  Google Scholar 

  164. Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir 15:7621–7625

    Article  CAS  Google Scholar 

  165. Chinthaginjala JK, Villa A, Su DS et al (2012) Nitrite reduction over Pd supported CNFs: metal particle size effect on selectivity. Catal Today 183:119–123

    Article  CAS  Google Scholar 

  166. Hao B, Xiao M, Wang Y et al (2018) Recyclable amphiphilic metal nanoparticle colloid enabled atmospheric oxidation of alcohols. ACS Appl Mater Interfaces 10:34332–34339

    Article  CAS  PubMed  Google Scholar 

  167. Collins G, Schmidt M, O’Dwyer C et al (2014) The origin of shape sensitivity in palladium-catalyzed Suzuki-Miyaura cross coupling reactions. Angew Chem—Int Ed 53:4142–4145

    Article  CAS  Google Scholar 

  168. Collins G, Schmidt M, Odwyer C et al (2014) Enhanced catalytic activity of high-index faceted palladium nanoparticles in suzuki-miyaura coupling due to efficient leaching mechanism. ACS Catal 4:3105–3111

    Article  CAS  Google Scholar 

  169. Navlani-García M, Verma P, Mori K et al (2017) Morphology-controlled Pd nanocrystals as catalysts in tandem dehydrogenation-hydrogenation reactions. J Chem Sci 129:1695–1703

    Article  CAS  Google Scholar 

  170. Kim SK, Kim C, Lee JH et al (2013) Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J Catal 306:146–154

    Article  CAS  Google Scholar 

  171. Lv T, Wang Y, Il Choi S et al (2013) Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation. Chemsuschem 6:1923–1930

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JST, PRESTO (JPMJPR1544) and by Grants-in-Aid for Scientific Research (Grant Nos. 26220911, 25289289, and 26630409, 26620194) from the Japan Society for the Promotion of Science (JSPS) and MEXT and “Elemental Strategy Initiative to Form Core Research Center”. MNG (A17F173810) and DST (J171015004) thank JSPS for the International Postdoctoral Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Yamashita.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navlani-García, M., Salinas-Torres, D., Mori, K. et al. Tailoring the Size and Shape of Colloidal Noble Metal Nanocrystals as a Valuable Tool in Catalysis. Catal Surv Asia 23, 127–148 (2019). https://doi.org/10.1007/s10563-019-09271-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09271-7

Keywords

Navigation