Skip to main content

Advertisement

Log in

Effective Electron–Hole Separation Over Controllable Construction of CdS/Co-Ni-P Core/Shell Nanophotocatalyst for Improved Photocatalytic Hydrogen Evolution Under Visible-Light-Driven

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In artificial photocatalysis, the slow kinetics of electron–hole transfer and high charge recombination rate have been the Achilles heel of photocatalytic conversion efficiency. Therefore, methods for promoting exciton splitting and charge separation have received sustained attention. Here, Co-Ni-P is used as a molecular cocatalyst, which is designed onto the surface of cadmium sulfide nanorods. CdS-Co-Ni-P constitutes a unique CdS/Co-Ni-P core/shell structure, which is a new type of efficient heterostructure photocatalysts used for photocatalytic decomposition of water to produce hydrogen. The modification strategy maximizes the contact area between the cocatalyst and the reactant, which effectively increases the light absorption capacity of the composite catalyst, reduces the overpotential of generating hydrogen, and accelerates the interface transfer rate of electron–hole pairs, thus achieving better photocatalytic decomposition of water. The reaction kinetics of the reduction is enhanced. Compared with pure CdS of the same quality, the optimal photocatalyst CdS-Co-Ni-P has a hydrogen evolution rate of 9.67 mmol g−1 h−1, which is about 5.3 times that of pure CdS. This work demonstrates that the new and efficient CdS/Co-Ni-P core/shell photocatalyst has great potential for photocatalytic production of H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Science 347:970

    Article  CAS  PubMed  Google Scholar 

  2. Ou HH, Yang PJ, Lin LH, Anpo MK, Wang XC (2017) Angew Chem Int Ed 56:10905

    Article  CAS  Google Scholar 

  3. Jin ZL, Zhang XJ, Li YX, Li SB, Lu GX (2007) Catal Commun 8:1267

    Article  CAS  Google Scholar 

  4. Humayun M, Zada A, Li ZJ, Xie MZ, Zhang XL, Qu Y, Raziq F, Jing LQ (2016) Appl Catal B 180:219

    Article  CAS  Google Scholar 

  5. Wang ZJ, Jin ZL, Wang GR, Ma BZ (2018) Int J Hydrogen Energy 43:13039

    Article  CAS  Google Scholar 

  6. Liu DD, Jin ZL, Zhang YK, Wang GR, Ma BZ (2018) J Colloid Interface Sci 529:44

    Article  CAS  PubMed  Google Scholar 

  7. Huang JW, Zhang Y, Ding Y (1841) ACS Catal 2017:7

    Google Scholar 

  8. Zhang WY, Li YX, Peng SQ (2016) ACS Appl Mater Interfaces 8:15187

    Article  CAS  PubMed  Google Scholar 

  9. Wang QZ, He JJ, Shi YB, Zhang SL, Niu TJ, She HD, Bi YP, Lei ZQ (2017) Appl Catal B 214:158

    Article  CAS  Google Scholar 

  10. Yuan YJ, Chen DQ, Xiong M, Zhong JS, Wan ZY, Zhou Y, Liu S, Yu ZT, Yang LX, Zou ZG (2017) Appl Catal B 204:58

    Article  CAS  Google Scholar 

  11. Zhang P, Guan BY, Yu L, Lou XW (2018) Chem 4:162

    Article  CAS  Google Scholar 

  12. Wang Y, Jiang W, Luo W, Chen X, Zhu Y (2018) Appl Catal B 237:633

    Article  CAS  Google Scholar 

  13. Yuan JL, Wen JQ, Zhong YG, Li X, Fang YQ, Zhang SG, Liu W (2015) J Mater Chem A 3:18244

    Article  CAS  Google Scholar 

  14. Huang CJ, Chen C, Zhang MW, Lin LH, Ye XX, Lin S, Antonietti MK, Wang XC (2015) Nat Commun 6:7698

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu QW, Chen C, Du M, Wu YW, Ren CJ, Ding KN, Song MX, Huang CJ, Appl ACS (2018) Nano Mater 1:4566

    Article  CAS  Google Scholar 

  16. Cao SW, Yu JG, J. (2014) J Phys Chem Lett 5:2101

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Qiao SZ, Qi LF, Yu JG (2013) Phys Chem Chem Phys 15:12088

    Article  CAS  PubMed  Google Scholar 

  18. Wang P, Sheng Y, Wang F, Yu H (2018) Appl Catal B 220:561

    Article  CAS  Google Scholar 

  19. Yu HG, Zhong W, Huang X, Wang P, Yu JG (2018) Chem Eng 6:5513

    CAS  Google Scholar 

  20. Wu T, Wang P, Qian J, Ao Y, Wang C, Hou J (2017) Dalton Trans 46:13793

    Article  CAS  PubMed  Google Scholar 

  21. Zhang LJ, Hao XQ, Jian QY, Jin ZL (2019) J Solid State Chem 274:286

    Article  CAS  Google Scholar 

  22. Feng CC, Wang ZH, Ma Y, Zhang YJ, Wang L, Bi YP (2017) Appl Catal B 205: 19.

    Article  CAS  Google Scholar 

  23. Zhao H, Dong Y, Jiang P, Wang G, Miao H, Wu R, Kong L, Zhang J, Zhang C, Sustainable ACS (2015) Chem Eng 3:969

    CAS  Google Scholar 

  24. Zhang S, Chen Q, Jing D, Wang Y, Guo L (2012) Int J Hydrogen Energy 37:791

    Article  CAS  Google Scholar 

  25. Wang PF, Wu TF, Wang C, Hou J, Qian J, Ao YH, Sustainable ACS (2017) Chem Eng 5:7670

    CAS  Google Scholar 

  26. Yu HG, Huang X, Wang P, Yu JG (2016) J Phys Chem C 120:3722

    Article  CAS  Google Scholar 

  27. Cui X, Wang Y, Jiang G, Xu C, Duan A, Liu J, Wei J, Bai W (2014) J Mater Chem A 2:20939.

  28. Yue D, Qian X, Zhang Z, Kan M, Ren M, Zhao Y, Sustainable ACS (2016) Chem Eng 4:6653

    CAS  Google Scholar 

  29. Zhang LJ, Jin ZL, Ma XL, Zhang YP, Wang HY (2019) New J Chem 43:3609

    Article  CAS  Google Scholar 

  30. Hu EL, Feng YF, Nai JW, Zhao D, Hu Y, Lou XW (2018) Energy Environ Sci 11:872

    Article  CAS  Google Scholar 

  31. Xu H, Li X, Kang S-Z, Qin L, Li G, Mu J (2014) Int J Hydrogen Energy 39:11578

    Article  CAS  Google Scholar 

  32. Zhao D, Sun B, Li XQ, Qin LX, Kang SZ, Wang D (2016) RSC Adv 6:33120

    Article  CAS  Google Scholar 

  33. Yang H, Jin ZL, Liu DD, Fan K, Wang GR (2018) J Phys Chem C 122:10430

    Article  CAS  Google Scholar 

  34. Shi R, Ye HF, Liang F, Wang Z, Li K, Weng YX, Lin ZS, Fu WF, Che CM, Chen Y (2018) Adv Mater 30:1705941

    Article  CAS  Google Scholar 

  35. Choi JH, Reddy DA, Han NS, Jeong SH, Hong SY, Kumar DP, Song JK, Kim TK (2017) Catal Sci Technol 7:641

    Article  CAS  Google Scholar 

  36. Cao S, Chen Y, Wang CJ, Lv XJ, Fu WF (2015) Chem Commun 51:8708

    Article  CAS  Google Scholar 

  37. Xu L, Gong H, Deng L, Long F, Gu Y, Guan J, Appl ACS (2016) Mater Interfaces 8:9395

    Article  CAS  Google Scholar 

  38. Tian J, Liu Q, Asiri AM, Sun X (2014) J Am Chem Soc 136:7587

    Article  CAS  PubMed  Google Scholar 

  39. Sharon M, Tamizhmani G (1989) Solar Cells 26:303

    Article  CAS  Google Scholar 

  40. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F (2010) Nano Lett 10:1271

    Article  CAS  PubMed  Google Scholar 

  41. Zhang YK, Wang GR, Ma W, Ma BZ, Jin ZL (2018) Dalton Trans 47:11176

    Article  CAS  PubMed  Google Scholar 

  42. Zhen WL, Ning XF, Yang BJ, Wu YQ, Li Z, Lu GX (2018) Appl Catal B 221:243

    Article  CAS  Google Scholar 

  43. Hao XQ, Zhou J, Cui ZW, Wang YC, Wang Y, Zou ZG (2018) Appl Catal B 229:41

    Article  CAS  Google Scholar 

  44. Tsai KA, Hsu YJ (2015) Appl Catal B 164:271

    Article  CAS  Google Scholar 

  45. Lu YH, Lin WH, Yang CY, Chiu YH, Pu YC, Lee MH, Hsu YJ (2014) Nanoscale 6:8796

    Article  CAS  PubMed  Google Scholar 

  46. Antony RP, Bassi PS, Abdi FF, Chiam SY, Ren Y, Barber J, ChyeLoo JS, Wong LH (2016) Electrochim Acta 211:173

    Article  CAS  Google Scholar 

  47. Meekins BH, Kamat PV (2009) ACS Nano 3:3437–3446

    Article  CAS  PubMed  Google Scholar 

  48. Yang H, Jin ZL, Wang GR, Liu DD, Fan K (2018) Dalton Trans 47:6973

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Xue Y, Tian J, Song X, Zhang X, Wang X, Cui H (2017) Sol Energy Mater Sol C 168:100

    Article  CAS  Google Scholar 

  50. Li J, Cui H, Song X, Wei N, Tian J (2017) Appl Surf Sci 396:1539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Chinese National Natural Science Foundation (41663012 and 21862002), The new technology and system for clean energy catalytic production, Major scientific project of North Minzu University (ZDZX201803).The Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project, North Minzu University and the Key Laboratory for the development and application of electrochemical energy conversion technology, North Minzu University.

Author information

Authors and Affiliations

Authors

Contributions

Lijun Zhang conceived and designed the experiments; Lijun Zhang performed the experiments; Zhiliang Jin contributed reagents/materials and analysis tools and Lijun Zhang wrote the paper.

Corresponding author

Correspondence to Zhiliang Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jin, Z. Effective Electron–Hole Separation Over Controllable Construction of CdS/Co-Ni-P Core/Shell Nanophotocatalyst for Improved Photocatalytic Hydrogen Evolution Under Visible-Light-Driven. Catal Surv Asia 23, 219–230 (2019). https://doi.org/10.1007/s10563-019-09274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09274-4

Keywords

Navigation