Skip to main content
Log in

Microstructural, magnetic, electrical transport and large magnetoresistance properties of La0.57Nd0.1Sr0.13 Ag0.2MnO3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This report presents the structural, magnetoresistance (MR) and magneto-electrical properties of Ag substituted La0.57Nd0.1Sr0.13Ag0.2MnO3 compound synthesized by solid state reaction method. To obtain crystallographic parameters, the X-ray diffraction patterns are fitted in R-3c space group with Rietveld refinement method. The resistivity and magneto-transport measurements are performed using standard four-probe assembly with and without magnetic fields. The electrical resistivity was fitted with the phenomenological percolation model, which is based on the phase segregation of ferromagnetic metallic clusters and paramagnetic isolant regions. So, we found that the estimated results are in adequate accordance with experimental data. The obtained values of the temperature coefficient of resistance (TCR) for La0.57Nd0.1Sr0.13Ag0.2MnO3 sample are comparable with some systems used for infrared sensors. The Large MR of La0.57Nd0.1Sr0.13 Ag0.2MnO3 is suitable for utilization in electronic instruments such as computer hard discs, high field magnetic sensors, and memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Tripathi, V.P.S. Awana, H. Kishan, G.L. Bhalla, J. Magn. Magn. Mater. 320(10), L89–L92 (2008)

    CAS  Google Scholar 

  2. T.V. Ramakrishnan, Modelling colossal magnetoresistance manganites. J. Phys. Condens. Mat. 19(12), 125211 (2007)

    Google Scholar 

  3. M. Smari, I. Walha, E. Dhahri, E.K. Hlil, J. Alloy. Compd. 579, 564–571 (2013)

    CAS  Google Scholar 

  4. M. Triki, E. Dhahri, E.K. Hlil, J.L. Garden, J. Appl. Phys. 115(10), 103709 (2014)

    Google Scholar 

  5. J. Khelifi, M. Nasri, E. Dhahri, Journal of Superconductivity and Novel Magnetis 29(3), 753–758 (2016)

    CAS  Google Scholar 

  6. J. Khelifi, M. Nasri, E. Dhahri, J. Supercond. Nov. Magn. 29(10), 2559–2566 (2016)

    CAS  Google Scholar 

  7. R. Hamdi, A. Tozri, M. Smari, E. Dhahri, L. Bessais, Mater. Res. Bull. 95, 525–531 (2017)

    CAS  Google Scholar 

  8. E.L. Nagaev, Phys. Rep. 346(6), 387–581 (2001)

    CAS  Google Scholar 

  9. P.G. de Gennes, Phys. Rev. 118(1), 141–154 (1960)

    Google Scholar 

  10. V.P.S. Awana, R. Tripathi, N. Kumar, H. Kishan, G.L. Bhalla, R. Zeng, L.S.S. Chandra, V. Ganesan, H.U. Habermeier, J. Appl. Phys. 107(9), 09D723 (2010)

    Google Scholar 

  11. S. Vadnala, T.D. Rao, P. Pal, S. Asthana. Physica B448, 277 (2014)

    Google Scholar 

  12. V.P.S. Awana, R. Tripathi, S. Balamurugan, H. Kishan, E. Takayama-Muromachi, Solid State Commun. 140(9-10), 410–415 (2006)

    CAS  Google Scholar 

  13. S. Mnefgui, N. Zaidi, N. Dhahri, J. Dhahri, E.K. Hlil, JMMM 384, 219–223 (2015)

    CAS  Google Scholar 

  14. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B 51 (1995) 14103, 20, 14109

    CAS  Google Scholar 

  15. X.-B. Yuan, Y.-H. Liu, B.-X. Huang, C.-J. Wang, L.-M. Mei, Solid. State . Commun. 135(3), 170–173 (2005)

    CAS  Google Scholar 

  16. T. Tang, Q.Q. Cao, K.M. Gu, H.Y. Xu, S.Y. Zhang, Y.W. Du, Appl. Phys. Lett. 77(5), 723–725 (2000)

    Google Scholar 

  17. P.T. Phong, N.V. Khiem, N.V. Dai, D.H. Manh, L.V. Hong, N.X. Phuc, J. Alloy. Compd. 484(1-2), 12–16 (2009)

    CAS  Google Scholar 

  18. M. Viret, M. Drouet, J. Nassar, J.P. Contour, C. Fermon, A. Fert, Europhys. Lett. 39(5), 545–550 (1997)

    CAS  Google Scholar 

  19. J.H. Park, E. Vescovo, H.J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Nature 392(6678), 794–796 (1998)

    CAS  Google Scholar 

  20. R.J. Soulen, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Science 282(5386), 85–88 (1998)

    CAS  Google Scholar 

  21. V.P.S. Awana, R. Tripathi, N. Kumar, H. Kishan, G.L. Bhalla, R. Zeng, L.S.S. Chandra, V. Ganesan, H.U. Habermeier, J. Appl. Phys. 107(9), 09D723 (2010)

    Google Scholar 

  22. Y.-H. Huang, C.-H. Yan, F. Luo, W. Song, Z.-M. Wang, C.-S. Liao, Appl. Phys. Lett. 81(1), 76–78 (2002)

    CAS  Google Scholar 

  23. V.K. Pecharsky, K.A. Gschneidner Jr, Phys. Rev. Lett. 78(23), 4494–4497 (1997)

    CAS  Google Scholar 

  24. H. Wada, Y. Tanabe, Appl. Phys. Lett. 79(20), 3302–3304 (2001)

    CAS  Google Scholar 

  25. J. Khelifi, M. Nasri, E. Dhahri, Journal of Superconductivity and Novel Magnetis 29, 753–758 (2016)

    CAS  Google Scholar 

  26. H.M. Rietveld, J. Appl. Crystallogr. 2(2), 65–71 (1969)

    CAS  Google Scholar 

  27. A. Guinier, in Théorie et Technique de la radiocristallographie, 3rd edn, ed. by X. Dunod (Dunod, Paris, 1964), p. 462

  28. S. Das, T.K. Dey, J. Phys. D 40, 185 (2007)

    Google Scholar 

  29. S. Zemni, A. Gasmi, M. Boudard, M. Oumezzine, Mater. Sci. Eng. B 144(1-3), 117–122 (2007)

    CAS  Google Scholar 

  30. R. Regmi, R. Tackett, G. Lawes, J. Magn. Magn. Mater. 321(15), 2296–2299 (2009)

    CAS  Google Scholar 

  31. G. Venkataiah, V. Prasad, P. Venugopal Reddy, Solid State Commun. 141 (2007) 73, 2, 78

  32. L.M. Rodriguez-Martinez, J.P. Attfield, Phys. Rev. B 54(22), R15622–R15625 (1996)

    CAS  Google Scholar 

  33. M.D. Daivajna, A. Rao, G.S. Okram, J. Magn. Magn. Mater. 388, 90–95 (2015)

    CAS  Google Scholar 

  34. S. Vadnala, T. Durga Rao, Prem Pal, Saket Asthana, Physica B 448 (2014) 277–280

  35. V.Y. Zerov, V.G. Malyorov, I.A. Khrebtov, Y.V. Kulikov, I.I. Shaganov, A.D. Smirnov, Infrared Phys. Technol. 68, 428 (2001)

    CAS  Google Scholar 

  36. G. Li, H.-D. Zhou, S.L. Feng, X.-J. Fan, X.G. Li, J.Appl.Phys. 92, 1406 (2002)

    CAS  Google Scholar 

  37. N. Panwar, V. Sen, D.K. Pandya, S.K. Agarwal, Mater. Lett. 61(27), 4879–4883 (2007)

    CAS  Google Scholar 

  38. N. Panwar, V. Sen, D.K. Pandya, S.K. Agarwal, Mater. Lett. 61(27), 4879–4883 (2007)

    CAS  Google Scholar 

  39. I.K. Kamilov, A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, S.B. Abdulvagidov, O.V. Melnikov, O.Y. Gorbenko, A.R. Kaul, J. Exp. Theor. Phys. 105(4), 774–781 (2007)

    CAS  Google Scholar 

  40. S.B. Abdulvagidov, A.G. Gamzatov, O.V. Melnikov, O.Y. Gorbenko, J. Exp. Theor. Phys. 109(6), 989–996 (2009)

    CAS  Google Scholar 

  41. H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77(10), 2041–2044 (1996)

    CAS  Google Scholar 

  42. A.P. Chen, Z.X. Bi, C.F. Tsai, J. Lee, Q. Su, X.H. Zhang, Q.X. Jia, J.L. MacManus- Driscoll, H.Y. Wang, Adv. Funct. Mater. 21(13), 2423–2429 (2011)

    CAS  Google Scholar 

  43. P.T. Phong, L.V. Bau, L.C. Hoan, D.H. Manh, N.X. Phuc, I. Lee, J. Alloy. Compd. 656, 920–928 (2016)

    CAS  Google Scholar 

  44. L.E. Hueso, J. Rivas, F. Rivadulla, M.A. López-Quintela, Magnetoresistance in manganite/alumina nanocrystalline composites. J. Appl. Phys. 89(3), 1746–1750 (2001)

    CAS  Google Scholar 

  45. N. Manyala, Y. Sidis, J.F. DiTusa, G. Aeppli, D.P. Young, Z. Fisk, Nature 404(6778), 581–584 (2000)

    CAS  Google Scholar 

  46. T. Dietl, J. Phys. Soc. Jpn. 77(3), 031005 (2008)

    Google Scholar 

  47. T. Wojtowicz, T. Dietl, M. Sawicki, W. Plesiewicz, J. Jaroszy_nski, Phys. Rev. Lett. 56(22), 2419–2422 (1986)

    CAS  Google Scholar 

  48. M. Triki, E. Dhahri, E.K. Hlil, J.L. Garden, J. Appl. Phys. 115(10), 103709 (2014)

    Google Scholar 

Download references

Acknowledgments

This work is performed with in the frame work of collaboration and is supported by the Tunisian Ministry of Higher Education and Scientific Research and Technology and Higher Education, Scientific of French.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Nasri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, M., Dhahri, E. & Hlil, E.K. Microstructural, magnetic, electrical transport and large magnetoresistance properties of La0.57Nd0.1Sr0.13 Ag0.2MnO3. J Electroceram 43, 73–83 (2019). https://doi.org/10.1007/s10832-019-00185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00185-4

Keywords

Navigation