Skip to main content

Advertisement

Log in

Electrocaloric effect and pyroelectric energy harvesting in diffuse ferroelectric Ba(Ti1-xCex)O3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In the present work Ba(Ti1-xCex)O3 ceramics are prepared through a standard solid-state sintering process. Crystal structures, dielectric properties, ferroelectric properties and electrocaloric effects are exactly studied. Ce4+ ions cannot entirely enter the position of Ti4+, so some impure phases are generated. The diffusivity of phase transition is strengthened by substituting Ti4+ with Ce4+ cations. The maximal pyroelectric coefficient decreases, and the extent of corresponding temperature deviating from the dielectric peak temperature to higher temperature increases with increasing the content of cerium cations. The adiabatic temperature change and isothermal entropy change display the same tendency as that of the pyroelectric coefficient. The Ba(Ti0.9Ce0.1)O3 ceramic shows the largest adiabatic temperature change of 0.41 K and the largest isothermal entropy change of 0.45 J/(kg·K) among the ceramics. Accordingly, the adiabatic temperature change responsivity is 0.090 × 10−6 K·m/V, and the isothermal entropy change responsivity is 0.100 × 10−6 J·m/(kg·K·V). For individual composition, the absolute value of pyroelectric coefficient decreases with increasing the magnitude of applied electric field, and the temperature of maximal pyroelectric coefficient deviates from the dielectric peak temperature shifts to higher temperature. Ba(Ti0.9Ce0.1)O3 ceramics show the largest pyroelectric energy density of 0.14 J/cm3 among all compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.B. Sawyer, C.B. Tower, Rochelle salt as a dielectric. Phys. Rec. B 35(3), 269–273 (1930)

    Article  CAS  Google Scholar 

  2. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin film PbZr0.95Ti0.05O3. Science 311, 1270 (2006)

    Article  CAS  Google Scholar 

  3. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (Oxford University Press, New York, 1977)

    Google Scholar 

  4. R.W. Whatmore, Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335–1386 (1986)

    Article  CAS  Google Scholar 

  5. S.B. Lang, D.K. Das-Gupta, in Handbook of Advanced Electronic and Photonic Materials and Devices, ed. by H. S. Nalwa. Pyroelectricity: Fundamentals and Applications, vol 4 (Academic Press, San Diego, 2001), pp. 1–54

    Google Scholar 

  6. D. Lingam, A.R. Parikh, J. Huang, A. Jain, M. MinaryJolandan, Nano/microscale pyroelectric energy harvesting: Challenges and opportunities. Int. J. Smart Nano Mater. 4(4), 229–245 (2013)

    Article  Google Scholar 

  7. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7(12), 3836–3856 (2014)

    Article  Google Scholar 

  8. N. Abdelmoula, H. Chaabane, H. Khemakem, R. von der Muhll, A. Simon, Relaxor or Classical Ferroelectric Behavior in A-Site Substituted Perovskite Type Ba1-x(Sm0.5Na0.5)xTiO3. Solid State Sci. 8, 880–887 (2006)

    Article  CAS  Google Scholar 

  9. R. Farhi, M. El Marssi, A. Simon, J. Ravez, Relaxor-like and spectroscopic properties of niobium modified barium Titanate. Eur. Phys. J. B. 18, 605–610 (1999)

    Article  Google Scholar 

  10. T. Maiti, R. Guo, A.S. Bhalla, Structure-property phase diagram of BaZrxTi1-xO3 system. J. Am. Ceram. Soc. 91(6), 1769–1780 (2008)

    Article  CAS  Google Scholar 

  11. X.S. Qian, H.J. Ye, Y.T. Zhang, H. Gu, X. Li, C.A. Randall, Q.M. Zhang, Giant Electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater. 24(9), 1300–1305 (2014)

    Article  CAS  Google Scholar 

  12. Z.K. Liu, X. Li, Q.M. Zhang, Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett.101, 954–959 (2012)

    Article  Google Scholar 

  13. Y. Bai, H. Xi, L.J. Qiao, Effect of donor doping in B sites on the electrocaloric effect of BaTi1-xNbxO3 ceramics. RSC Adv. 5(88), 71873–71877 (2015)

    Article  CAS  Google Scholar 

  14. Z. Luo, D. Zhang, Y. Liu, D. Zhou, Y. Yao, C. Liu, B. Dkhil, X. Ren, X. Lou, Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature. Appl. Phys. Lett. 105, 102904 (2014)

    Article  Google Scholar 

  15. H. Kaddoussi, Y. Gagou, A. Lahmar, J. Belhadi, B. Allouche, J.-L. Dellis, M. Courty, H. Khemakhem, M. El Marssi, Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1-xSnxO3 (x=0, x=0.075) ceramics. Solid State Commun. 201, 64–67 (2015)

    Article  CAS  Google Scholar 

  16. X. Zhang, L. Wu, S. Gao, J.Q. Liu, B. Xu, Y.D. Xia, J. Yin, Z.G. Liu, Large electrocaloric effect in Ba(Ti1−xSnx)O3 ceramics over a broad temperature region. AIP Adv. 5(4), 047134 (2015)

    Article  Google Scholar 

  17. Y. Zhou, Q. Lin, W. Liu, D. Wang, Compositional dependence of electrocaloric effect in lead-free (1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics. RSC Adv. 6, 14084 (2016)

    Article  CAS  Google Scholar 

  18. H. Kaddoussi, Y. Gagou, A. Lahmar, B. Asbani, B. Allouche, J.-L. Dellis, G. Cordoyiannis, H. Khemakhem, M. El Marssi, Indirect and direct electrocaloric measurements of (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics (x=0.05, 0.20). J. Alloys Compd. 667, 198–203 (2016)

    Article  CAS  Google Scholar 

  19. B. Asbani, J.-L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, M. El Marssi, Lead-free Ba0.8Ca0.2(ZrxTi1-x)O3 ceramics with large electrocaloric effect. Appl. Phys. Lett.106, 042902 (2015)

  20. S. Xie, Y. Bai, F. Han, S. Qin, J. Li, L. Qiao, D. Guo, Distinct effects of Ce doping in a or B sites on the electrocaloric effect of BaTiO3 ceramics. J. Alloys Compd. 724, 163–168 (2017)

    Article  CAS  Google Scholar 

  21. F. Han, Y. Bai, L.J. Qiao, D. Guo, A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics. J. Mater. Chem. C 4(9), 1842–1849 (2016)

    Article  CAS  Google Scholar 

  22. X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, L. Mañosa, N.D. Mathur, Giant Electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25(9), 1360–1365 (2013)

    Article  CAS  Google Scholar 

  23. B. Rožic, M. Kosec, H. Uršic, J. Holc, B. Malic, Q.M. Zhang, R. Blinc, R. Pirc, Z. Kutnjak, Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J. Appl. Phys. 110(6), 064118 (2011)

    Article  Google Scholar 

  24. Y. Bai, K. Ding, G.P. Zheng, S.Q. Shi, L. Qiao, Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Phys. Status Solidi A 209(5), 941–944 (2012)

    Article  CAS  Google Scholar 

  25. Y. Bai, X. Han, K. Ding, L.J. Qiao, Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1-xSrxTiO3 ceramics. Appl. Phys. Lett. 103, 162902 (2013)

    Article  Google Scholar 

  26. G.C. Lin, X.M. Xiong, J.X. Zhang, Q. Wei, Latent heat study of phase transition in Ba0.73Sr0.27TiO3 induced by electric field. Therm. Anal. Calorim. 81, 41–44 (2005)

    Article  CAS  Google Scholar 

  27. M. Sanlialp, V.V. Shvartsman, M. Acosta, B. Dkhil, D.C. Lupascu, Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3–0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Appl. Phys. Lett. 106, 062901 (2015)

    Article  Google Scholar 

  28. K.S. Srikanth, R. Vaish, Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1−xO3 ceramics. J. Eur. Ceram. Soc. 37(13), 3927–3933 (2017)

    Article  CAS  Google Scholar 

  29. S.M. Zeng, X.G. Tang, Q.X. Liu, Y.P. Jiang, M.D. Li, W.H. Li, Z.H. Tang, Electrocaloric effect and pyroelectric properties in Ce-doped BaCexTi1-xO3 ceramics. J. Alloys Compd. 776, 731–739 (2019)

    Article  CAS  Google Scholar 

  30. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192(1-2), 55–69 (1993)

    Article  CAS  Google Scholar 

  31. G. Burns, F.H. Dacol, Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun. 48(10), 853–856 (1983)

    Article  CAS  Google Scholar 

  32. S.B. Vakhrushev, B.E. Kvyatkovy, A.A. Nabereznov, N.M. Okuneva, B.P. Toperverg, Glassy phenomena in disordered perovskite-like crystals. Ferroelectrics 90(1), 173–176 (1989)

    Article  CAS  Google Scholar 

  33. K. Hirota, Z.G. Ye, S. Wakimoto, P.M. Gehring, G. Shirane, Neutron diffuse scattering from polar nanoregions in the relaxor Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 65(10), 104105 (2002)

    Article  Google Scholar 

  34. V.V. Shvartsman, W. Kleemann, J. Dec, Z.K. Xu, S.G. Lu, Diffuse phase transition in BaTi1-xSnxO3 ceramics: An intermediate state between ferroelectric and relaxor behavior. J. Appl. Phys. 99(12), 124111 (2006)

    Article  Google Scholar 

  35. V.P. Bovtoun, M.A. Leshchenko, Two dielectric contributions due to domain/cluster structure in the ferroelectrics with diffused phase transitions. Ferroelectrics 190(1), 185–190 (1997)

    Article  CAS  Google Scholar 

  36. A. Chen, Y. Zhi, DC electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model. Phys. Rev. B 69, 174109 (2004)

    Article  Google Scholar 

  37. A. Navid, L. Pilon, Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. Smart Mater. Struct. 20, 025012 (2011)

    Article  Google Scholar 

  38. I.M. McKinley, L. Pilon, Phase transitions and thermal expansion in pyroelectric energy conversion. Appl. Phys. Lett. 102(2), 023906 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China under Grant No. 51772266, and Natural Science Foundation of Zhejiang Province under Grand No. LY15E020003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, X.Q., Wu, S.Y. et al. Electrocaloric effect and pyroelectric energy harvesting in diffuse ferroelectric Ba(Ti1-xCex)O3 ceramics. J Electroceram 43, 106–116 (2019). https://doi.org/10.1007/s10832-019-00183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00183-6

Keywords

Navigation