Skip to main content

Advertisement

Log in

Building high transduction coefficient BiScO3–PbTiO3 piezoceramic and its power generation characteristics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Improving the power generation characteristics of piezoelectric energy harvesters requires the construction of piezoelectric ceramics with high transduction coefficient (d33 × g33), which remains a big challenge. In this paper, guided by piezoelectric energy harvester applications, the relationship between the composition, microstructure and transduction coefficient of (1 − x)BiScO3xPbTiO3 material is systematically studied. The results demonstrated that the sample with a composition of x = 0.64 not only has a high Curie temperature (426 °C) which is beneficial to improve the working stability of the device, but also has a very high d33 × g33 value (15,110 × 10−15 m2/N), which is significantly superior to the commercial PZT system. Excellent electrical performance can be attributed to the fact that the composition of x = 0.64 located near MPB has a very high piezoelectric charge constant (505 pC/N) at the same time with moderate dielectric constant (1907). The cantilever-type energy harvester made of optimized composition generated a high output power density of 2.93 μW/mm3 at room temperature, which charged a commercial 47 μF electrolytic capacitor to 22 V in just 220 s and lighted up 72 LEDs for 0.1~0.2 s. Further, x = 0.64 harvester exhibited a large output voltage of 2.76 V even at 350 °C, suggesting its potential use for powering high temperature wireless sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.A. Islam, S. Priya, J. Am. Ceram. Soc. 89(10), 3147–3156 (2006)

    Article  CAS  Google Scholar 

  2. R.E. Eitel, C.A. Randall, T.R. Shrout, S. Park, Jpn. J. Appl. Phys. 41, 2099 (2002)

    Article  CAS  Google Scholar 

  3. S. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, E.F. Alberta, Appl. Phys. Lett. 86(26), 262904 (2005)

    Article  Google Scholar 

  4. E. Berganza, C. Pascual-González, H. Amorín, A. Castro, M. Algueró, J. Eur. Ceram. Soc. 36(16), 4039–4048 (2016)

    Article  CAS  Google Scholar 

  5. H. Amorin, M. Alguero, R.D. Campo, E. Vila, P. Ramos, M. Dolle, Y. Romaguera-Barcelay, J.P. Cruz, A. Castro, Sci. Technol. Adv. Mater. 16(1), 016001 (2015)

    Article  Google Scholar 

  6. C. Pascual-González, E. Berganza, H. Amorín, A. Castro, M. Algueró, Mater. Des. 108, 501–509 (2016)

    Article  Google Scholar 

  7. H. Qiao, C. He, Z. Wang, X. Li, Y. Liu, X. Long, Ceram. Int. 43(14), 11463–11468 (2017)

    Article  CAS  Google Scholar 

  8. J. Chen, G. Liu, J. Cheng, S. Dong, Appl. Phys. Lett. 107(3), 032906 (2015)

    Article  Google Scholar 

  9. J. Wu, Y. Yu, X. Li, X. Gao, S. Dong, S. Zhang, J. Am. Ceram. Soc. 98(10), 3145–3152 (2015)

    Article  CAS  Google Scholar 

  10. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A 5(14), 6569–6580 (2017)

    Article  CAS  Google Scholar 

  11. H.H. Kumar, C.M. Lonkar, K. Balasubramanian, P. Davies, J. Am. Ceram. Soc. 100(1), 215–223 (2017)

    Article  CAS  Google Scholar 

  12. Z. Yang, J. Zu, Energy Convers. Manag. 122, 321 (2016)

    Article  CAS  Google Scholar 

  13. D. Yuan, Y. Yang, Q. Hu, Y. Wang, D.C. Lupascu, J. Am. Ceram. Soc. 97(12), 3999–4004 (2014)

    Article  CAS  Google Scholar 

  14. J. Wu, X. Chen, Z. Chu, W. Shi, Y. Yu, S. Dong, Appl. Phys. Lett. 109(17), 173901 (2016)

    Article  Google Scholar 

  15. J. Wu, H. Shi, T. Zhao, Y. Yu, S. Dong, Adv. Funct. Mater. 26(39), 7186–7194 (2016)

    Article  CAS  Google Scholar 

  16. X. Yan, M. Zheng, Y. Hou, M. Zhu, J. Eur. Ceram. Soc. 37(7), 2583–2589 (2017)

    Article  CAS  Google Scholar 

  17. M. Algueró, P. Ramos, R. Jiménez, H. Amorín, E. Vila, A. Castro, Acta Mater. 60(3), 1174–1183 (2012)

    Article  Google Scholar 

  18. R. Nie, Q. Zhang, Y. Yue, H. Liu, Y. Chen, Q. Chen, J. Zhu, P. Yu, D. Xiao, J. Appl. Phys. 119(12), 124111 (2016)

    Article  Google Scholar 

  19. M. Zheng, Y. Hou, H. Ge, M. Zhu, H. Yan, Scripta Mater. 68(9), 707–710 (2013)

    Article  CAS  Google Scholar 

  20. R. Yue, X. Hou, W. He, J. Yu, Jpn. J. Appl. Phys. 52(6R), 061502 (2013)

    Article  Google Scholar 

  21. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, J. Appl. Phys. 104(3), 034104 (2008)

    Article  Google Scholar 

  22. Q. Liu, Y. Zhang, L. Zhao, J. Gao, Z. Zhou, K. Wang, X. Zhang, L. Li, J.-F. Li, J. Mater. Chem. C 6(39), 10618–10627 (2018)

    Article  CAS  Google Scholar 

  23. M.P. Zheng, Y.D. Hou, F.Y. Xie, J. Chen, M.K. Zhu, H. Yan, Acta Mater.61(5), 1489–1498 (2013)

    Article  CAS  Google Scholar 

  24. Y. Wei, C. Jin, P. Ye, P. Li, Y. Zeng, G. Xu, Appl. Phys. A Mater. Sci. Process. 123(4) (2017)

  25. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40(10), 5999–6002 (2001)

    Article  CAS  Google Scholar 

  26. V.F. Freitas, L.F. Cótica, I.A. Santos, D. Garcia, J.A. Eiras, J. Eur. Ceram. Soc. 31(15), 2965–2973 (2011)

    Article  CAS  Google Scholar 

  27. T. Takeuchi, M. Tabuchi, I. Kondoh, N. Tamari, H. Kageyama, J. Am. Ceram. Soc. 83(3), 541 (2000)

    Article  CAS  Google Scholar 

  28. P. Li, B. Liu, B. Shen, J. Zhai, Y. Zhang, F. Li, X. Liu, J. Eur. Ceram. Soc. 38(1), 75–83 (2018)

    Article  Google Scholar 

  29. M. Zhang, K. Wang, J. Zhou, J. Zhou, X. Chu, X. Lv, J. Wu, J. Li, Acta Mater. 122, 344–351 (2017)

    Article  CAS  Google Scholar 

  30. G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  CAS  Google Scholar 

  31. T.R. Shrout, S.J. Zhang, J. Electroceram. 19(1), 113–126 (2007)

    Article  Google Scholar 

  32. Y. Yue, Y. Hou, M. Zheng, X. Yan, J. Fu, M. Zhu, J. Eur. Ceram. Soc. 37(15), 4625–4630 (2017)

    Article  CAS  Google Scholar 

  33. Z. Gubinyi, C. Batur, A. Sayir, F. Dynys, J. Electroceram. 20, 95 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51677001, 51602012), Ri-Xin Talents Project of Beijing University of Technology (Grant No. 2017-RX(1)-15) and Beijing Municipal High Level Innovative Team Building Program (No. IDHT20170502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Hou, Y., Yu, X. et al. Building high transduction coefficient BiScO3–PbTiO3 piezoceramic and its power generation characteristics. J Electroceram 43, 123–130 (2019). https://doi.org/10.1007/s10832-019-00180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00180-9

Keywords

Navigation