Skip to main content
Log in

Castling of phases in BaZrO3 doped (Na0.52K0.48)(Nb0.95Sb0.05)O3: Synergistic effect on electrical fatigue, ageing and thermal stability

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

BaZrO3 doped (Na0.52K0.48)(Nb0.95Sb0.05)O3 ceramics were prepared using solid state route. The optimization of processing parameters like calcination temperature (800 °C), sintering temperature (1140 °C) and poling parameters (3 kV/mm at 120 °C/60 min) was carried out on base composition. Optimized parameters yielded a piezoelectric charge coefficient of 171 pC/N in composition having 4 mol% BaZrO3. Low temperature dielectric measurements and high temperature X-ray diffraction studies, along with structural refinement using Rietveld method were performed to ascertain the new found phenomenon. A castling-like phenomenon was observed in (1-x)(Na0.52K0.48)(Nb0.95Sb0.05)O3xBaZO3 (0.00 ≤ x ≤ 0.08) ceramics, where two phases interchanged their position. Also, BaZrO3 led to negative ageing behavior in these ceramics. Doping of BaZrO3 improved the electrical fatigue behavior and degraded the ferroelectric and thermal stability of ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.H. Haertling, Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    CAS  Google Scholar 

  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)

    CAS  Google Scholar 

  3. J. Fu, R. Zuo, D. Lv, Y. Liu, Y. Wu, Structure and piezoelectric properties of lead-free. J. Mater. Sci. Mater. Electron., 241–245 (2010)

  4. J. Fu, R. Zuo, X. Fang, K. Liu, Lead-free ceramics based on alkaline niobate tantalite antimonate with excellent dielectric and piezoelectric properties. Mater. Res. Bull. 44(5), 1188–1190 (2009)

    CAS  Google Scholar 

  5. J. Fu, R. Zuo, Y. Liu, X-ray analysis of phase coexistence and electric poling processing in alkaline niobate-based compositions. J. Alloys Compd. 493(1-2), 197–201 (2010)

    CAS  Google Scholar 

  6. D. Lin, K.W. Kwok, H. Tian, H.W.L. Chan, Phase transitions and electrical properties of (Na1-xKx )(Nb1-ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aid. J. Am. Ceram. Soc. 90(5), 1458–1462 (2007)

    CAS  Google Scholar 

  7. Y. Gong, G. Yang, X. Li, L. Gong, L. Li, J. Peng, X. Zheng, J. Mater. Sci. Mater. Electron. 23, 1910–1915 (2012)

    CAS  Google Scholar 

  8. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press London and New York, 1971), pp. 193–194

    Google Scholar 

  9. H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, M. Kuball, Raman spectroscopy of (K,Na)NbO3 and (K,Na)1−xLixNbO3. Appl. Phys. Lett. 93(26), 262901 (2008)

    Google Scholar 

  10. L. Wu, J.L. Zhang, C.L. Wang, J.C. Li, Influence of compositional ratio K/Na on physical properties in (Kx Na1-x) NbO3 ceramics. J. Appl. Phys. 103, 1–5 (2008)

    Google Scholar 

  11. N. Ishizawa, J. Wang, T. Sakakura, Y. Inagaki, K.I. Kakimoto, Structural evolution of Na0.5K0.5NbO3 at high temperatures. J. Solid State Chem. 183(11), 2731–2738 (2010)

    CAS  Google Scholar 

  12. Y. Guo, K. Kakimoto, H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2-3), 241–244 (2005)

    CAS  Google Scholar 

  13. P. Bomlai, S. Sukprasert, S. Muensit, S.J. Milne, Reaction-sintering of lead-free piezoceramic compositions: (0.95 - X)Na0.5K0.5NbO3-0.05LiTaO3- xLiSbO3. J. Mater. Sci. 43(18), 6116–6121 (2008)

    CAS  Google Scholar 

  14. Y. Saito, H. Takao, High performance Lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 338(1), 17–32 (2006)

    CAS  Google Scholar 

  15. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)

    CAS  Google Scholar 

  16. X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, X. Lou, B. Zhang, J. Zhu, New potassium-sodium niobate ceramics with a giant d33. ACS Appl. Mater. Interfaces 6(9), 6177–6180 (2014)

    CAS  Google Scholar 

  17. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free electromechanical ceramics with fatigue-resistant behavior. J. Alloy. Compd. 647, 857–865 (2015)

    CAS  Google Scholar 

  18. A. Maqbool, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, Effect of SrZrO3 substitution on structural and electrical properties of lead-free Bi0.5Na0.5TiO3–BaTiO3 ceramics. Phys. Status Solidi A 211(8), 1709–1714 (2014)

    CAS  Google Scholar 

  19. K. Wang, F.Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.F. Li, J. Rödel, Temperature-insensitive (K,Na)NbO3-based Lead-free Piezoactuator ceramics. Adv. Funct. Mater. 23(33), 4079–4086 (2013)

    CAS  Google Scholar 

  20. F.Z. Yao, J. Glaum, K. Wang, W. Jo, J. Rödel, J.F. Li, Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K,Na)NbO3-based lead-free piezoceramics. Appl. Phys. Lett. 103(19), 192907 (2013)

    Google Scholar 

  21. F.Z. Yao, K. Wang, Y. Shen, J.F. Li, Robust CaZrO3-modified (K, Na)NbO3-based lead-free piezoceramics: High fatigue resistance insensitive to temperature and electric field. J. Appl. Phys. 118(13), 134102 (2015)

    Google Scholar 

  22. F.Z. Yao, K. Wang, W. Jo, J.S. Lee, J.F. Li, Effect of poling temperature on piezoelectricity of CaZrO3-modified (K, Na)NbO3-based lead-free ceramics. J. Appl. Phys. 116(11), 114102 (2014)

    Google Scholar 

  23. J.S. Zhou, F.Z. Yao, K. Wang, Q. Li, X.M. Qi, F.Y. Zhu, J.F. Li, Ferroelectric and piezoelectric properties of 0.95(Na0.49K0.49Li0.02)(Nb0.8Ta0.2)O3–0.05CaZrO3 lead-free ceramics prepared by spark plasma sintering. J. Mater. Sci. Mater. Electron. 26, 9329–9335 (2015)

    CAS  Google Scholar 

  24. Y. Zhang, L. Li, W. Bai, B. Shen, J. Zhai, B. Li, Effect of CaZrO3 on phase structure and electrical properties of KNN-based lead-free ceramics. RSC Adv. 5(25), 19647–19651 (2015)

    CAS  Google Scholar 

  25. B. Zhang, X. Wang, X. Cheng, J. Zhu, D. Xiao, J. Wu, Enhanced d33 value in (1-x)[(K0.50Na0.50)0.97Li0.03Nb0.97Sb0.03O3] - xBaZrO3 lead-free ceramics with an orthorhombic–rhombohedral phase boundary. J. Alloys Compd. 581, 446–451 (2013)

    CAS  Google Scholar 

  26. B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, D. Xiao, Rhombohedral-orthorhombic phase coexistence and electrical properties of ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics. Curr. Appl. Phys. 13(8), 1647–1650 (2013)

    Google Scholar 

  27. R. Zuo, J. Fu, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)

    CAS  Google Scholar 

  28. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl. Mater. Interfaces 5(16), 7718–7725 (2013)

    CAS  Google Scholar 

  29. J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. Mcmillan, R. Zuleeg, Quantitative measurement of space charge effects in lead zirconate titanate memories. J. Appl. Phys. 70(1), 382–388 (1991)

    CAS  Google Scholar 

  30. J. Nuffer, D.C. Lupascu, J. Rödel, Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 48(14), 3783–3794 (2000)

    CAS  Google Scholar 

  31. J. Nuffer, D.C. Lupascu, J. Rödel, Stability of pinning centers in fatigued lead – Zirconate – Titanate. Appl. Phys. Lett. 80(6), 1049–1051 (2002)

    CAS  Google Scholar 

  32. B. Rawal, N.N. Wathore, B. Praveenkumar, H.S. Panda, Effect of donor and acceptor co-doping in (Na0.52K0.48)(Nb0.95Sb0.05)O3 lead-free piezoceramic. J. Mater. Sci. Mater. Electron. 28, 16426–16432 (2017)

    CAS  Google Scholar 

  33. H.D. Megaw, Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 58(2), 133–152 (1946)

    CAS  Google Scholar 

  34. R.A. Young, in Introduction to the Rietveld Method in: R. A. Young, ed. by T. R. Method. (Oxford University Press, Oxford, 1993), pp. 1–38

    Google Scholar 

  35. A.L. Ortiz, F.L. Cumbrera, F.S. Bajo, F. Guiberteau, R. Caruso, Fundamental parameters approach in the Rietveld method: A study of the stability of results versus the accuracy of the instrumental profile. J. Eur. Ceram. Soc. 20(11), 1845–1851 (2000)

    CAS  Google Scholar 

  36. A.J. Paula, R. Parra, M.A. Zaghete, J.A. Varela, A.J. Paula, R. Parra, M.A. Zaghete, J.A. Varela, Study on the K3Li2Nb5O15 formation during the production of (Na0.5K0.5)1-xLixNbO3 lead-free piezoceramics at the morphotropic phase boundary. Solid State Commun. 149(39-40), 1587–1590 (2009)

    CAS  Google Scholar 

  37. K. Kakimoto, K. Akao, Y.P. Guo, H. Ohsato, Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics. Jpn. J. Appl. Phys. 44(9B), 7064–7067 (2005)

    CAS  Google Scholar 

  38. V.J. Tennery, K.W. Hang, Thermal and X-ray diffraction studies of the NaNbO3 –KNbO3System. J. Appl. Phys. 39(10), 4749–4753 (1968)

    CAS  Google Scholar 

  39. Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, J. Guan, Synthesis, growth mechanism and optical properties of (K,Na)NbO3 nanostructures. Cryst. Eng. Comm. 12(10), 3157–3162 (2010)

    CAS  Google Scholar 

  40. D.W. Baker, P.A. Thomas, N. Zhang, A.M. Glazer, A comprehensive study of the phase diagram of KxNa1-xNbO3. Appl. Phys. Lett. 95(9), 91903 (2009)

    Google Scholar 

  41. T.A. Skidmore, S.J. Milne, Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3](1-x)-[LiTaO3](x) powder. J. Mater. Res. 22(8), 2265–2272 (2007)

    CAS  Google Scholar 

  42. M.M. Shamim, T. Ishidate, K. Ohi, High pressure raman study of KNbO3–KTaO3 and KNbO3–NaNbO3 mixed crystals. J. Phys. Soc. Jpn. 72(3), 551–555 (2003)

    CAS  Google Scholar 

  43. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L 1072–L 1074 (2004)

    CAS  Google Scholar 

  44. K. Ahadi, H. Kim, S. Stemmer, Spontaneous hall effects in the electron system at the SmTiO 3/EuTiO 3 interface. APL Mater. 6, 056102 (2011)

    Google Scholar 

  45. K. Ahadi, S. Stemmer, Novel metal-insulator transition at the SmTiO3/SrTiO3 interface. Phys. Rev. Lett. 118(23), 236803 (2017)

    Google Scholar 

  46. H.Y. Park, J.Y. Choi, M.K. Choi, K.H. Cho, S. Nahm, Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 Lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91(7), 2374–2377 (2008)

    CAS  Google Scholar 

  47. R.M. German, P. Suri, S.J. Park, Review: Liquid phase sintering. J. Mater. Sci. 44(1), 1–39 (2009)

    CAS  Google Scholar 

  48. L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1–27 (2014)

    CAS  Google Scholar 

  49. V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)

    CAS  Google Scholar 

  50. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Google Scholar 

  51. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358(6382), 136–138 (1992)

    CAS  Google Scholar 

  52. Z. Luo, T. Granzow, J. Glaum, W. Jo, J. Rödel, M. Hoffman, Effect of ferroelectric long-range order on the unipolar and bipolar electric fatigue in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J. Am. Ceram. Soc. 94(11), 3927–3933 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. S. Panda or Bhupender Rawal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, H.S., Rawal, B., Wathore, N.N. et al. Castling of phases in BaZrO3 doped (Na0.52K0.48)(Nb0.95Sb0.05)O3: Synergistic effect on electrical fatigue, ageing and thermal stability. J Electroceram 43, 51–63 (2019). https://doi.org/10.1007/s10832-019-00179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00179-2

Keywords

Navigation