Skip to main content
Log in

Effects of size on the phase stability and conductivity of double-doped δ-Bi2O3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Nano and micro (Bi2O3)1-x-y(Eu2O3)x(Er2O3)y (x = 0.1, 0.15, y = 0.05, 0.2) double-doped system materials are synthesized by exploiting solid-state synthesis techniques. When we use nano sized powders to synthesize the samples we call them nano; when we use micro sized powders, we call them micro. The thermal, structural, morphological and electrical properties of nano and micro structured electrolyte samples for solid oxide fuel cells (SOFCs) are characterized. As a result of XRD measurements, the face centered δ-Bi2O3 (cubic) phase is obtained for all nano samples. However, the mixed phase is obtained for some micro samples. The electrical measurements show that conductivity decreases when the amount of Er2O3 is increased. The principal conclusion of the study is that the size effect provides relatively good structural stability in intermediate temperature SOFCs (IT-SOFCs); also, the nano-Bi2O3 system has the lowest activation energy and demonstrates high electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Shuk, H.D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Solid State Ionics 89(3-4), 179–196 (1996)

    Article  Google Scholar 

  2. R. O’hayre, S.W. Cha, W. Colella, et al., in Wiley. Fuel cell fundamentals (2005)

    Google Scholar 

  3. A. Dapčević, D. Poleti, J. Rogan, A. Radojković, M. Radović, G. Branković, Solid State Ionics 280, 18–23 (2015)

    Article  Google Scholar 

  4. S. Zha, C. Xia, G. Meng, J. Power Sources 115(1), 44–48 (2003)

    Article  Google Scholar 

  5. E.D. Wachsman, K.T. Lee, Science 334(6058), 935–939 (2011)

    Article  Google Scholar 

  6. N. Jaiswal, B. Gupta, D. Kumar, O. Parkash, J. Alloys Compd. 633, 174–182 (2015)

    Article  Google Scholar 

  7. B.C.H. Steele, A. Heinzel, Nature 414(6861), 345–352 (2001)

    Article  Google Scholar 

  8. B. Zhu, X. Liu, Z. Zhu, R. Ljungberg, Int. J. Hydrog. Energy 33(13), 3385–3392 (2008)

    Article  Google Scholar 

  9. E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Adv. Mater. 24(2), 195–208 (2012)

    Article  Google Scholar 

  10. S. Beg, S. Hafeez, N.A.S. Al-Areqi, Philos. Mag. 90(34), 4579–4593 (2010)

    Article  Google Scholar 

  11. S. Beg, N.A.S. Al-Areqi, K.A.S. Ghaleb, A. Al-Alas, S. Hafeez, Philos. Mag. 94(15), 1661–1673 (2014)

    Article  Google Scholar 

  12. F. Schröder, N. Bagdassarov, F. Ritter, L. Bayarjargal, Phase Transit. 83(5), 311–325 (2010)

    Article  Google Scholar 

  13. S.-F. Wang, Y.-F. Hsu, W.-C. Tsai, H.-C. Lu, J. Power Sources 218, 106–112 (2012)

    Article  Google Scholar 

  14. S. Sanna, V. Esposito, J.W. Andreasen, J. Hjelm, W. Zhang, T. Kasama, S.B. Simonsen, M. Christensen, S. Linderoth, N. Pryds, Nat. Mater. 14(5), 500–504 (2015)

    Article  Google Scholar 

  15. N. Jiang, E.D. Wachsman, J. Am. Ceram. Soc. 82, 3057–3064 (1999)

    Article  Google Scholar 

  16. N. Cornei, N. Tancret, F. Abraham, O. Mentré, Inorg. Chem. Commun. 45(13), 4886–4888 (2006)

    Article  Google Scholar 

  17. A.F. Gualtieri, S. Immovilli, M. Prudenziati, Powder Diffract. 12(02), 90–92 (1997)

    Article  Google Scholar 

  18. M. Drache, P. Roussel, J.P. Wignacourt, Chem. Rev. 107(1), 80–96 (2007)

    Article  Google Scholar 

  19. S.E. Lin, W.C.J. Wei, J. Eur. Ceram. Soc. 31(16), 3081–3086 (2011)

    Article  Google Scholar 

  20. E.D. Wachsman, J. Eur. Ceram. Soc. 24(6), 1281–1285 (2004)

    Article  Google Scholar 

  21. M. Ahila, E. Subramanian, D.P. Padiyan, J. Electroanal. Chem. (2017) In Press

  22. G.H. Zhong, J.L. Wang, Z. Zeng, Phys. Status Solidi B 12, 2737–2742 (2008)

    Article  Google Scholar 

  23. H.T. Cahen, T.G.M. Van Den Belt, J.H.W. De Wit, G.H.J. Broers, Solid State Ionics 1(5-6), 411–423 (1980)

    Article  Google Scholar 

  24. H. Iwahara, T. Esaka, T. Sato, T. Takahashi, J. Solid State Chem. 39(2), 173–180 (1981)

    Article  Google Scholar 

  25. M. Prekajski, Z. D-Mitrović, M. Radović, B. Babić, J. Pantić, A. Kremenović, B. Matović, J. Eur. Ceram. Soc. 32(9), 1983–1987 (2012)

    Article  Google Scholar 

  26. M. Leszczynska, A.B. Centkowska, M. Malys, J.R. Dygas, F. Krok, W. Wrobel, I. Abrahams, Solid State Ionics 269, 33–43 (2015)

    Article  Google Scholar 

  27. S. Arasteh, A. Maghsoudipour, M. Alizadeh, A. Nemati, Ceram. Int. 37(8), 3451–3455 (2011)

    Article  Google Scholar 

  28. M. Drache, P. Roussel, J.-P. Wignacourt, P. Conflant, Mater. Res. Bull. 39(10), 1393–1405 (2004)

    Article  Google Scholar 

  29. D.W. Jung, K.L. Duncan, M.A. Camaratta, K.T. Lee, J.C. Nino, E.D. Wachsman, J. Am. Ceram. Soc. 93, 1384–1391 (2010)

    Google Scholar 

  30. C.H. Hervoches, C. Greaves, Solid State Ionics 254, 1–5 (2014)

    Article  Google Scholar 

  31. R. Kayalı, M.K. Özen, N.Ç. Bezir, A. Evcin, Physica B 489, 39–44 (2016)

    Article  Google Scholar 

  32. A. Watanabe, M. Sekita, Solid State Ionics 176(31-34), 2429–2433 (2005)

    Article  Google Scholar 

  33. T. Chou, L.-D. Liu, W.C.J. Wei, J. Eur. Ceram. Soc. 31(16), 3087–3094 (2011)

    Article  Google Scholar 

  34. İ. Ermiş, M. Arı, D.S. Acer, Y. Dağdemir, Int. J. Hydrog. Energy 40(30), 9485–9490 (2015)

    Article  Google Scholar 

  35. Y. Polat, M. Arı, Y. Dağdemir, Phase Transit. 90(4), 387–398 (2017)

    Article  Google Scholar 

  36. Y. Polat, H. Akalan, M. Arı, Int. J. Hydrog. Energy 42(1), 614–622 (2017)

    Article  Google Scholar 

  37. Y. Polat, Y. Dağdemir, M. Arı, Curr. Appl. Phys. 16(12), 1588–1596 (2016)

    Article  Google Scholar 

  38. Y. Polat, Int. J. Hydrog. Energy 43(1), 468–469 (2018)

    Article  Google Scholar 

  39. A. Watanabe, Solid State Ionics 176(31-34), 2423–2426 (2005)

    Article  Google Scholar 

  40. S. Yilmaz, O. Turkoglu, M. Arı, I. Belenli, Ceramica 57(342), 185–192 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the authorities of Erciyes University in Kayseri, Turkey for providing laboratory facilities during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Polat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, Y. Effects of size on the phase stability and conductivity of double-doped δ-Bi2O3. J Electroceram 42, 89–97 (2019). https://doi.org/10.1007/s10832-018-0163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0163-9

Keywords

Navigation