Skip to main content
Log in

Impedance spectroscopy and conduction mechanism of NaYP2O7 ceramic compound

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In the present study, NaYP2O7 compound was prepared by solid-state method and was characterized by powder X-ray diffraction and Raman spectroscopy. The X-ray diffraction of the sample at room temperature showed a monoclinic phase. Electrical conductivity and modulus studies over a wide range of frequencies (40 Hz to 7 MHz) and temperature (400–560 K) were studied using impedance spectroscopic technique. The impedance plane plot shows semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The ac conductivity of the investigated compound obeys the power law: σac(ω) = σdc + Aωn where n < 1. The frequency-dependent maxima of the imaginary part of modulus are found to obey Arrhenius law with activation energy 0.64 eV. The activation energy responsible for dielectric relaxation extracted from the modulus spectra is found to be almost the same as the value obtained from the equivalent circuit. These results indicate that the transport is through ion hopping mechanism dominated by the motion of the Na+ ion in the structure of the investigated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Rissouli, K. Benkhouja, J.R. Ramos, C. Julien, Mater. Scie. Eng. B 98(3), 185–189 (2003)

    Article  Google Scholar 

  2. S. Nasri, A. Oueslati, I. Chaabane, M. Gargouri, Ceram. Int. 42(12), 14041–14048 (2016)

    Article  Google Scholar 

  3. J.J. Carvajal, I. Parreu, R. Sole, X. Solans, F. Diaz, M. Aguilo, Chem. Mater. 17, 6746 (2005)

    Article  Google Scholar 

  4. C.R. Mariappan, G. Govindaraj, S.V. Rathan, G.V. Prakash, Mater. Sci. Eng. B 123, 63 (2005)

    Article  Google Scholar 

  5. B. Louati, M. Gargouri, K. Guidara, T. Mhiri, J. Phys. Chem. Solids 66, 762 (2004)

    Article  Google Scholar 

  6. Y. Ben Taher, A. Oueslati, M. Gargouri, J. Alloys Compd. 668, 206–212 (2016)

    Article  Google Scholar 

  7. Y. Uebou, S. Okada, M. Egashira, J.I. Yamaki, Solid State Ionics 148(3-4), 323–328 (2002)

    Article  Google Scholar 

  8. Y. Ben Taher, R. Hajji, A. Oueslati, M. Gargouri, J. Clust. Sci. 26, 812 (2014)

    Google Scholar 

  9. P. Barpanda, S.I. Nishimura, A. Yamada, Adv. Energy Mater. 2(7), 841–859 (2012)

    Article  Google Scholar 

  10. R. Ben Said, B. Louati, K. Guidara, Ionics 6, 1027 (2013)

    Google Scholar 

  11. S. Nasri, M. Megdiche, M. Gargouri, Ionics 21, 67 (2014)

    Article  Google Scholar 

  12. C.R. Mariappan, G. Govindaraj, S. Vinoth Rathan, V. Prakash, Mater. Scie. Eng. B 123, 63 (2005)

    Article  Google Scholar 

  13. S. Khorari, A. Rulmount, P. Tarte, J. Solid State Chem. 134(1), 31–37 (1997)

    Article  Google Scholar 

  14. A.K. Jonscher, J.M. Reau, J. Mater. Sci. 13, 365 (1978)

    Google Scholar 

  15. A. Hamady, T. Jouini, Acta. Cryst. C 52, 2949–2951 (1996)

    Article  Google Scholar 

  16. M. Sassi, A. Oueslati, M. Gargouri, Appl. Phys. A Mater. Sci. Process. 10, 339 (2015)

    Google Scholar 

  17. B.S. ParajÓn-Costa, R.C. Mercader, E.J. Baran, J. Phys. Chem. Solids 74(2), 354–359 (2013)

    Article  Google Scholar 

  18. G.T. Stranford, R.A. Condrate, B.C. Cornilsen, J. Mol. Struct. 73(1), 231–234 (1981)

    Article  Google Scholar 

  19. R. Said, B. Louati, K. Guidara, Ionics 20(2), 209–219 (2014)

    Article  Google Scholar 

  20. E.J. Baran, R.C. Mercader, A. Massaferro, E. Kremer, Spectrochim. Acta A 60, 1001 (2004)

    Article  Google Scholar 

  21. S. Pattanayak, B. N. Parida, P. R. Das, R. N. P. Choudhary, Appl. Phys. A 112, 387-395 (2013)

    Article  Google Scholar 

  22. C.F. Yang, J. Appl. Phys. 35, 1806 (1996)

    Article  Google Scholar 

  23. K. Lily, K. Kumari, R.N.P. Prasad, J. Alloys Compd. 453(1-2), 325–331 (2008)

    Article  Google Scholar 

  24. B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 401, 43 (2008)

    Google Scholar 

  25. M. Sassi, A. Bettaibi, A. Oueslati, K. Khirouni, M. Gargouri, J. Alloys Compd. 649, 642 (2015)

  26. A. Daidouh, C. Durio, C. Pico, M.L. Veiga, N. Chouaibi, A. Ouassini, Solid State Sci. 4, 541 (2002)

    Article  Google Scholar 

  27. B.V.R. Chowdari, R. Gopalakrishnan, Solid State Ionics 23(3), 225–233 (1987)

    Article  Google Scholar 

  28. M. Sassi, A. Oueslati, N. Moutia, K. Khirouni, M. Gargouri, Ionics 115, 1903 (2016)

    Google Scholar 

  29. Y. Ben Taher, A. Oueslati, K. Khirouni, M. Gargouri, Mater. Res. Bull. 78, 148–157 (2016)

    Article  Google Scholar 

  30. G. Paramesh, R. Vaish, K.B.R. Varma, J. Non-Cryst. Solids 357(5), 1479–1484 (2011)

    Article  Google Scholar 

  31. K.L. Ngai, R.W. Rendell, H. Jain, Phys. Rev. B 30(4), 2133–2139 (1984)

    Article  Google Scholar 

  32. M. Pant, D.K. Kanchan, N. Gondaliya, Mater. Chem. Phys. 115(1), 98–104 (2009)

    Article  Google Scholar 

  33. J.M. Reau, S. Rossignol, B. Tanguy, J.M. Rojo, P. Herrero, R.M. Rojas, J. Sanz, Solid State Ionics 74, 65-73 (1994)

    Article  Google Scholar 

  34. R. Kohlrausch, Poggendorf’s Ann. Phys. 91, 179 (1854)

    Article  Google Scholar 

  35. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  36. R. Ben Said, B. Louati, K. Guidara, J. Alloys Compd. 672, 521–528 (2016)

    Article  Google Scholar 

  37. L. Ying, Y. Haibo, L. Miao, Z. Ge, Mater. Res. Bull. 51, 44 (2014)

    Article  Google Scholar 

  38. A.K. Jonscher, Nature (London) 264, 673 (1977)

    Article  Google Scholar 

  39. A. Ghosh, Phys. Rev. B 41(3), 1479–1488 (1990)

    Article  Google Scholar 

  40. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28(22), 1449–1451 (1972)

    Article  Google Scholar 

  41. G.E. Pike, Phys. Rev. B 6(4), 1572–1580 (1972)

    Article  Google Scholar 

  42. S.R. Elliott, Philos. Mag. B 36, 129 (1978)

    Google Scholar 

  43. R.H. Chen, R.Y. Chang, C.S. Shern, Solid State Ionics 177(33-34), 2857–2864 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oueslati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oueslati, A., Gargouri, M. Impedance spectroscopy and conduction mechanism of NaYP2O7 ceramic compound. J Electroceram 42, 129–135 (2019). https://doi.org/10.1007/s10832-018-0162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0162-x

Keywords

Navigation