Skip to main content
Log in

Investigation of backbone dynamics and local geometry of bio-molecules using calculated NMR chemical shifts and anisotropies

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Prerequisite for chemical shift (CS) and CS tensor calculations are highly refined structures defining the molecular surroundings of the nuclei under study. Here, we present geometry optimizations with 13C and 15N CS constraints for large bio-molecules like peptides and proteins. The method discussed here provides both, refined structures and chemical shift tensors. Furthermore, since the experimental resonances of aligned systems are related to CS tensors, they strongly depend on the orientation and motion of molecules, their fragments, functional groups and moieties. For efficient CS calculations we apply a semi-empirical approach—the bond polarization theory (BPT). The BPT relies on linear bond polarization parameters and we present a new set of parameters based on ab initio second-order Møller–Plesset perturbation theory calculations. The new parametrization extends the applicability of the BPT approach to a wide range of organic molecules and bio-polymers. Here, the method has been applied to the protein ubiquitin and the membrane-active peptide gramicidin A (dimer) in oriented bilayers. The calculated 13C and 15N CS values of best-refined structures published until now gave a large scatter with respect to the experiment. It will be shown that BPT CS optimizations can reduce these errors to values near the experimental uncertainty. In combination with molecular dynamics with orientational constraints it is possible to study motional dynamics and BPT calculations can provide residual chemical shift anisotropies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Born R, Spiess HW, Kutzelnigg W, Fleischer U, Schindler M (1994) Conformational effects on 13C-NMR chemical shifts of an amorphous polymer: an ab initio study by the IGLO method. Macromolecules 27:1500–1504

    Article  ADS  Google Scholar 

  • Cisnetti F, Loth K, Pelupessy P, Bodenhausen G (2004) Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR. ChemPhysChem 5:807–814

    Article  Google Scholar 

  • Cornilescu GBA (2000) Measurement of proton, nitrogen, and carbonyl chemical shielding anisotropies in a protein dissolved in a dilute liquid crystalline phase. JACS 122:10143–10154

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998a) Ubiquitin NMR structure. Biological magnetic resonance data bank

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998b) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. JACS 120:6836–6837

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr A 47:392–400

    Article  Google Scholar 

  • Facelli JC (2011) Chemical shift tensors: theory and application to molecular structural problems. Prog Nucl Magn Reson Spectrosc 58:176–201

    Article  Google Scholar 

  • Fares C, Sharom FJ, Davis JH (2002) N-15, H-1 heteronuclear correlation NMR of gramicidin A in DMPC-d(67). JACS 124:11232–11233

    Article  Google Scholar 

  • Gauss J (1992) Calculation of NMR chemical shifts at second-order many-body perturbation-theory using gauge-including atomic orbitals. Chem Phys Lett 191:614–620

    Article  ADS  Google Scholar 

  • Ho BK, Thomas A, Brasseur R (2003) Revisiting the Ramachandran plot: hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. Protein Sci 12:2508–2522

    Article  Google Scholar 

  • Iuliucci RJ, Facelli JC, Alderman DW, Grant DM (1995) Carbon-13 chemical shift tensors in polycyclic aromatic compounds 5. Single-crystal study of acenaphthene. JACS 117:2336–2343

    Article  Google Scholar 

  • Jakovkin I, Klipfel M, Muhle-Goll C, Ulrich AS, Luy B, Sternberg U (2012) Rapid calculation of protein chemical shifts using bond polarization theory and its application to protein structure refinement. PCCP 14:12263–12276

    Article  ADS  Google Scholar 

  • Jaravine VA, Zhuravleva AV, Permi P, Ibraghimov I, Orekhov VY (2008) Hyperdimensional NMR spectroscopy with nonlinear sampling. JACS 130:3927–3936

    Article  Google Scholar 

  • Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460

    Article  ADS  Google Scholar 

  • Krause E, Bienert M, Schmieder P, Wenschuh H (2000) The helix-destabilizing propensity scale of D-amino acids: the influence of side chain steric effects. JACS 122:4865–4870

    Article  Google Scholar 

  • Laskowski RA, Moss DS, Thornton JM (1993) Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231:1049–1067

    Article  Google Scholar 

  • Lienin SF, Brem T, Brutscher B, Bruschweiler R, Ernst RR (1998) Anisotropic intramolecular backbone dynamics of ubiquitin characterized by NMR relaxation and MD computer simulation. J Am Chem Soc 120:9870–9879

    Article  Google Scholar 

  • Lovell SC, Davis IW, Adrendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by C alpha geometry: phi, psi and C beta deviation. Proteins Struct Funct Genet 50:437–450

    Article  Google Scholar 

  • Mai W, Hu W, Wang C, Cross TA (1993) Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer. Protein Sci 2:532–542

    Article  Google Scholar 

  • Mason J (1993) Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the Nato ARW on NMR shielding constants at the University-of-Maryland, College-Park, July 1992. SSNMR 2:285–288

    Google Scholar 

  • Möllhoff M, Sternberg U (2001) Molecular mechanics with fluctuating atomic charges: a new force field with a semi-empirical charge calculation. J Mol Model 7:90–102

    Article  Google Scholar 

  • Morin S (2011) A practical guide to protein dynamics from N-15 spin relaxation in solution. Prog Nucl Magn Reson Spectrosc 59:245–262

    Article  Google Scholar 

  • O’Keeffe M, Brese NE (1991) Atom sizes and bond lengths in molecules and crystals. J Am Chem Soc 113:3226–3229

    Article  Google Scholar 

  • Pauling L (1960) The nature of chemical bond, 3rd edn. Cornell University, New York

    MATH  Google Scholar 

  • Ramamoorthy A, Wei YF, Lee D-K (2004) PISEMA solid-state NMR spectroscopy. In: Webb GA (ed) Annual report on NMR spectroscopy, vol 52. Academic Press, New York, pp 1–52

    Chapter  Google Scholar 

  • Schindler M (1980) Die berechnung magnetischer eigenschaften unter verwendung individuell geeichter lokalisierter molekülorbitale. Abteilung chemie. Ruhr-Universiät Bochum, Bochum, p 186

    Google Scholar 

  • Sternberg U (1988) Theory of the influence of the 2nd coordination sphere on the chemical-shift. Mol Phys 63:249–267

    Article  ADS  Google Scholar 

  • Sternberg U (2010) Structure elucidation of biopolymers from constrained QM/MM calculations—from NMR chemical shifts to structure and dynamics. In: Advances in biomedical research, pp 268–272

  • Sternberg U, Priess W (1997) New semi-empirical approach for the calculation of C-13 chemical-shift tensors. J Magn Reson 125:8–19

    Article  ADS  Google Scholar 

  • Sternberg U, Koch FT, Mollhoff M (1994) New approach to the semiempirical calculation of atomic charges for polypeptides and large molecular-systems. J Comput Chem 15:524–531

    Article  Google Scholar 

  • Sternberg U, Koch F-T, Bräuer M, Kunert M, Anders E (2001) Molecular mechanics for zinc complexes with fluctuating atomic charges. J Mol Model 7:54–64

    Article  Google Scholar 

  • Sternberg U, Witter R, Ulrich AS (2004) 3D structure elucidation using NMR chemical shifts. Ann Rep NMR Spectrosc 52:53–104

    Article  Google Scholar 

  • Sternberg U, Witter R, Ulrich AS (2007) All-atom molecular dynamics simulations using orientational constraints from anisotropic NMR samples. J Biomol NMR 38:23–39

    Article  Google Scholar 

  • Sternberg U, Klipfel M, Grage SL, Witter R, Ulrich AS (2009) Calculation of fluorine chemical shift tensors for the interpretation of oriented F-19-NMR spectra of gramicidin A in membranes. PCCP 11:7048–7060

    Article  ADS  Google Scholar 

  • Sternberg U, Birtalan E, Jakovkin I, Luy B, Schepers U, Braese S, Muhle-Goll C (2013) Structural characterization of a peptoid with lysine-like side chains and biological activity using NMR and computational methods. Org Biomol Chem 11:640–647

    Article  Google Scholar 

  • Witter R, Priess W, Sternberg U (2002a) Chemical shift driven geometry optimization. J Comput Chem 23:298–305

    Article  Google Scholar 

  • Witter R, Seyfart L, Greiner G, Reissmann S, Weston J, Anders E, Sternberg U (2002b) Structure determination of a pseudotripeptide zinc complex with the COSMOS-NMR force field and DFT methods. J Biomol NMR 24:277–289

    Article  Google Scholar 

  • Witter R, Sternberg U, Hesse S, Kondo T, Koch F-T, Ulrich AS (2006) C-13 chemical shift constrained crystal structure refinement of cellulose I-alpha and its verification by NMR anisotropy experiments. Macromolecules 39:6125–6132

    Article  ADS  Google Scholar 

  • Witter R, Möllhoff M, Koch FT, Sternberg U (2015) Fast atomic charge calculation for implementation into a polarizable force field: application to an ion channel protein. J Chem. https://doi.org/10.1155/2015/908204

    Article  Google Scholar 

  • Zhang HL, Hou GJ, Lu MM, Ahn J, Byeon IJL, Langmead CJ, Perilla JR, Hung I, Gor’kov PL, Gan ZH et al (2016) HIV-1 capsid function is regulated by dynamics: quantitative. atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM, and MD. JACS 138:14066–14075

    Article  Google Scholar 

Download references

Acknowledgement

Authors thank the support from Karlsruhe Institute of Technology (KIT) and University Ulm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Sternberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sternberg, U., Witter, R. Investigation of backbone dynamics and local geometry of bio-molecules using calculated NMR chemical shifts and anisotropies. J Biomol NMR 73, 727–741 (2019). https://doi.org/10.1007/s10858-019-00284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-019-00284-y

Keywords

Navigation