Skip to main content
Log in

Fast MAS 1H–13C correlation NMR for structural investigations of plant cell walls

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Plant cell walls consist of a mixture of polysaccharides that render the cell wall a strong and dynamic material. Understanding the molecular structure and dynamics of wall polysaccharides is important for understanding and improving the properties of this energy-rich biomaterial. So far, solid-state NMR studies of cell wall structure and dynamics have solely relied on 13C chemical shifts measured from 2D and 3D correlation experiments. To increase the spectral resolution, sensitivity and upper limit of measurable distances, it is of interest to explore 1H chemical shifts and 1H-detected NMR experiments for analyzing cell walls. Here we demonstrate 2D and 3D 1H–13C correlation experiments at both moderate and fast MAS frequencies of 10–50 kHz to resolve and assign 1H chemical shifts of matrix polysaccharides in Arabidopsis primary cell walls. Both 13C-detected and 1H-detected experiments are implemented and are shown to provide useful and complementary information. Using the assigned 1H chemical shifts, we measured long-range correlations between matrix polysaccharides and cellulose using 1H–1H instead of 13C–13C spin diffusion, and the 2D experiments can be conducted with either 13C or 1H detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ara:

Arabinose

CW:

Cell wall

CP:

Cross polarization

DP:

Direct polarization

Gal:

Galactose

GalA:

Galacturonic acid

Glc:

Glucose

HG:

Homogalacturonan

INEPT:

Insensitive Nuclei Enhanced by Polarization Transfer

i:

Interior crystalline cellulose

MurNac:

N-Acetyl-muramic acid

Man:

Mannose

MAS:

Magic-angle spinning

RG-I:

Rhamnogalacturonan I

Rha:

Rhamnose

SSNMR:

Solid-state nuclear magnetic resonance

s:

Surface amorphous cellulose

TOCSY:

TOtal Correlated SpectroscopY

XyG:

Xyloglucan

Xyl:

Xylose

Xn:

Xylan

References

  • Agarwal V, Reif B (2008) Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy. J Magn Reson 194:16–24

    ADS  Google Scholar 

  • Andreas LB et al (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113:9187–9192

    Google Scholar 

  • Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson A 121:65–69

    ADS  Google Scholar 

  • Bax A, Clore GM, Gronenborn AM (1990) 1H-1H correlation via isotropic mixing of 13C magnetization, a new 3-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson 88:425–431

    ADS  Google Scholar 

  • Bennett AE, Rienstra CM, Griffiths JM, Zhen WG, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479

    ADS  Google Scholar 

  • Bielecki A, Kolbert AC, Levitt MH (1989) Frequency-switched pulse sequences—homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett 155:341–346

    ADS  Google Scholar 

  • Bougault C, Ayala I, Vollmer W, Simorre JP, Schanda P (2019) Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency. J Struct Biol 206:66–72

    Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Google Scholar 

  • Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22C:122–131

    Google Scholar 

  • Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204

    Google Scholar 

  • D’Auria M, Paloma LG, Minale L, Riccio R (1992) Structure chacterization by two-dimensional NMR spectroscopy, of two marine triterpene oligoglycosides from a pacific sponge of the genus Erylus. Tetrahedron 48:491–498

    Google Scholar 

  • Dick-Perez M, Zhang YA, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000

    Google Scholar 

  • Dick-Perez M, Wang T, Salazar A, Zabotina OA, Hong M (2012) Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. Magn Reson Chem 50:539–550

    Google Scholar 

  • Dregni AJ et al (2019) In vitro 0N4R tau fibrils contain a monomorphic b-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Proc Natl Acad Sci USA 116:16357–16366

    Google Scholar 

  • Dupree R, Simmons TJ, Mortimer JC, Patel D, Iuga D, Brown SP, Dupree P (2015) Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional 13C solid state nuclear magnetic resonance spectroscopy. Biochemistry 54:2335–2345

    Google Scholar 

  • Elena B, Lesage A, Steuernagel S, Bockmann A, Emsley L (2005) Proton to carbon-13 INEPT in solid-state NMR spectroscopy. J Am Chem Soc 127:17296–17302

    Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    Google Scholar 

  • Habibi Y, Heyraud A, Mahrouz M, Vignon MR (2004) Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydr Res 339:1119–1127

    Google Scholar 

  • Hardy EH, Verel R, Meier BH (2001) Fast MAS total through-bond correlation spectroscopy. J Magn Reson 148:459–464

    ADS  Google Scholar 

  • Harris DM et al (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci USA 109:4098–4103

    ADS  Google Scholar 

  • Hong M, Schmidt-Rohr K (2013) Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc Chem Res 46:2154–2163

    Google Scholar 

  • Ishii T, Ichita J, Matsue H, Ono H, Maeda I (2002) Fluorescent labeling of pectic oligosaccharides with 2-aminobenzamide and enzyme assay for pectin. Carbohydr Res 337:1023–1032

    Google Scholar 

  • Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:611–612

    ADS  Google Scholar 

  • Kirui A, Ling Z, Kang X, Dickwella Widanage MC, Mentink-Vigier F, French AD, Wang T (2019) Atomic resolution of cotton cellulose structure enabled by dynamic nuclear polarization solid-state NMR. Cellulose 26:329–339

    Google Scholar 

  • Kobayashi H et al (1995) Assignment of 1H and 13C NMR chemical-shifts of α D-mannan composed of α-(1- > 2)-linkage and α-(1- > 6)-linkage obtained from Candida kefyr IFO 0586 strain. Carbohydr Res 267:299–306

    Google Scholar 

  • Kobayashi H et al (1997) Structure of a cell wall mannan from the pathogenic yeast, Candida catenulata: assignment of 1H nuclear magnetic resonance chemical shifts of the inner α-1,6-linked mannose residues substituted by a side chain. Arch Biochem Biophys 341:70–74

    MathSciNet  Google Scholar 

  • Kumashiro KK, Schmidt-Rohr K, Murphy OJ, Ouellette KL, Cramer WA, Thompson LK (1998) A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc 120:5043–5051

    Google Scholar 

  • Laguri C et al (2018) Solid state NMR studies of intact lipopolysaccharide endotoxin. ACS Chem Biol 13:2106–2113

    Google Scholar 

  • Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705

    Google Scholar 

  • Lecoq L et al (2019) 100 kHz MAS proton-detected NMR spectroscopy of hepatitis B virus capsids. Front Mol Biosci 6:58

    Google Scholar 

  • Lopez-Sanchez P, Martinez-Sanz M, Bonilla MR, Wang D, Gilbert EP, Stokes JR, Gidley MJ (2017) Cellulose-pectin composite hydrogels: intermolecular interactions and material properties depend on order of assembly. Carbohydr Polym 162:71–81

    Google Scholar 

  • Lowman DW et al (2011) New insights into the structure of (1 - > 3,1 - > 6)-β-D-glucan side chains in the Candida glabrata cell wall. PLoS ONE 6:e27614

    ADS  Google Scholar 

  • Mandala VS, Hong M (2019) High-sensitivity protein solid-state NMR spectroscopy. Curr Opin Struct Biol. https://doi.org/10.1016/j.sbi.2019.03.027

    Article  Google Scholar 

  • Mccann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334

    Google Scholar 

  • Mccann MC, Roberts K, Wilson RH, Gidley MJ, Gibeaut DM, Kim JB, Carpita NC (1995) Old and new ways to probe plant cell wall architecture. Can J Bot 73:S103–S113

    Google Scholar 

  • Mortimer JC et al (2015) An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant J 83:413–426

    Google Scholar 

  • Nars A et al (2013) Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula. PLoS ONE 8:e75039

    ADS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Ia, from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Google Scholar 

  • Park YB, Cosgrove DJ (2015) Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol 56:180–194

    Google Scholar 

  • Pena MJ, Kulkarni AR, Backe J, Boyd M, O’Neill MA, York WS (2016) Structural diversity of xylans in the cell walls of monocots. Planta 244:589–606

    Google Scholar 

  • Phyo P, Wang T, Kiemle SN, O’Neill H, Pingali SV, Hong M, Cosgrove DJ (2017a) Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant Physiol 175:1593–1607

    Google Scholar 

  • Phyo P, Wang T, Xiao C, Anderson CT, Hong M (2017b) Effects of pectin molecular weight changes on the structure, dynamics, and polysaccharide interactions of primary cell walls of Arabidopsis thaliana: insights from solid-state NMR. Biomacromol 18:2937–2950

    Google Scholar 

  • Phyo P, Gu Y, Hong M (2019) Impact of acidic pH on plant cell wall polysaccharide structure and dynamics: insights into the mechanism of acid growth in plants from solid-state NMR. Cellulose 26:291–304

    Google Scholar 

  • Schanda P et al (2014) Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan. J Am Chem Soc 136:17852–17860

    Google Scholar 

  • Simmons TJ et al (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun 7:13902

    ADS  Google Scholar 

  • Stanek J et al (2016) NMR spectroscopic assignment of backbone and side-chain protons in fully protonated proteins: microcrystals, sedimented assemblies, and amyloid fibrils. Angew Chem Int Ed Engl 55:15504–15509

    Google Scholar 

  • Talbott LD, Ray PM (1992) Molecular-size and separability features of Pea cell wall polysaccharides. Implications for models of primary wall structure. Plant Physiol 98:357–368

    Google Scholar 

  • Tan L, Varnai P, Lamport DT, Yuan C, Xu J, Qiu F, Kieliszewski MJ (2010) Plant O-hydroxyproline arabinogalactans are composed of repeating trigalactosyl subunits with short bifurcated side chains. J Biol Chem 285:24575–24583

    Google Scholar 

  • Wang T, Hong M (2015) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514

    Google Scholar 

  • Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514

    Google Scholar 

  • Wang T, Zabotina O, Hong M (2012) Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856

    Google Scholar 

  • Wang T, Park YB, Caporini MA, Rosay M, Zhong LH, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci USA 110:16444–16449

    ADS  Google Scholar 

  • Wang T, Salazar A, Zabotina OA, Hong M (2014) Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. Biochemistry 53:2840–2854

    Google Scholar 

  • Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis thaliana primary cell walls: evidence from solid-state NMR. Plant Physiol 168:871–883

    Google Scholar 

  • Wang T, Phyo P, Hong M (2016a) Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nucl Magn Reson 78:56–63

    Google Scholar 

  • Wang T, Yang H, Kubicki JD, Hong M (2016b) Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and density functional theory calculations. Biomacromolecules 17:2210–2222

    Google Scholar 

  • Wefers D, Tyl CE, Bunzel M (2014) Novel arabinan and galactan oligosaccharides from dicotyledonous plants. Front Chem 2:100

    Google Scholar 

  • White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409

    Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In-vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8:491–504

    Google Scholar 

  • Wu X, Mort A (2014) Structure of a rhamnogalacturonan fragment from apple pectin: implications for pectin architecture. Int J Carbohydr Chem 2014:6

    Google Scholar 

  • Yu B, van Ingen H, Vivekanandan S, Rademacher C, Norris SE, Freedberg DI (2012) More accurate 1 J(CH) coupling measurement in the presence of 3 J(HH) strong coupling in natural abundance. J Magn Reson 215:10–22

    ADS  Google Scholar 

  • Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phyo, P., Hong, M. Fast MAS 1H–13C correlation NMR for structural investigations of plant cell walls. J Biomol NMR 73, 661–674 (2019). https://doi.org/10.1007/s10858-019-00277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-019-00277-x

Keywords

Navigation