Skip to main content
Log in

Genome-wide analysis of zinc- and iron-regulated transporter-like protein family members in apple and functional validation of ZIP10

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Deficiency of zinc (Zn) and iron (Fe) is common in apple grown in orchards, which affects fruit yield and quality. However, the mechanisms of absorption and transport of Zn and Fe in apples are still unclear. In the present study, we aimed to identify MdZIP genes and explore the mechanism of response of MdZIPs to Zn and Fe deficiencies. Eighteen Zn- and Fe-regulated transporter-like protein (ZIP) family members were identified in apple (Malus domestica L.) and named according to their chromosomal location. Phylogenetic analysis divided MdZIPs into four groups, and the most closely related MdZIPs in the phylogenetic tree showed similar gene structures and protein motifs. Expression pattern analysis indicated that ZIP genes in apple were differentially expressed among tissues and developmental stages under Zn and Fe deficiency. The overexpression of MdZIP10 increased the content of Zn and Fe in Arabidopsis thaliana L. and MdZIP10 played crucial roles in the uptake and transport of Zn and Fe. MdZIP10 was able to rescue growth of Zn2+ and Fe2+ uptake defective yeast mutants under Zn2+ and Fe2+ deficient conditions, respectively. Symptoms of Zn and Fe deficiency were alleviated in the MdZIP10 transgenic plants. The expression of genes related to Fe and Zn uptake and transport was induced in the MdZIP10 transgenic plants, thereby stimulating endogenous Fe and Zn uptake and transport mechanisms. The present study lays the foundation for future functional analysis of ZIP genes in apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Assunção AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RGH, Eldik MV, Fiers M, Schat H (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA 107:10296–10301

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer P, Bereczky Z (2004) Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol 136:4169–4183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan W, Huang Z, Song X, Liu T, Liu H, Hou X, Li Y (2016) Comprehensive analysis of the polygalacturonase and pectin methylesterase genes in Brassica rapa shed light on their different evolutionary patterns. Sci Rep 6:25107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755

    Article  CAS  PubMed  Google Scholar 

  • Eng BH, Guerinot ML, Eide D Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166:1–7

    Article  CAS  PubMed  Google Scholar 

  • Fornerginer MA, Llosá MJ, Carrasco JL, Perezamador MA, Navarro L, Ancillo G (2010) Differential gene expression analysis provides new insights into the molecular basis of iron deficiency stress response in the citrus rootstock Poncirus trifoliata (L.) Raf. J Exp Bot 61:483–490

    Article  CAS  Google Scholar 

  • Fu XZ, Zhou X, Xing F, Ling LL, Chun CP, Cao L, Aarts MGM, Peng LZ (2017) Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Front Plant Sci 8:588

    PubMed  PubMed Central  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Hereditas 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    Article  CAS  PubMed  Google Scholar 

  • Henriques R, Jásik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50:587–597

    Article  CAS  PubMed  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imsande J (2010) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plantarum 103:139–144

    Article  Google Scholar 

  • Inaba S, Kurata R, Kobayashi M, Yamagishi Y, Mori I, Ogata Y, Fukao Y (2015) Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant J 84:323

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909

    Article  CAS  PubMed  Google Scholar 

  • Jarvis R (2007) The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 174:39–45

    Article  CAS  PubMed  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Finkstraube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jeong HJ, Sun AK, Lee J, Guerinot ML, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim SA, Lee J, Guerinot ML, An G (2010b) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, Guo J, Chen J, Chen R (2013) Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol 13:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhou X, Li H, Liu Y, Zhu L, Guo J, Liu X, Fan Y, Chen J, Chen R (2015) Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis. PLoS ONE 10:e0136647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhou X, Zhao Y, Li H, Liu Y, Zhu L, Guo J, Huang Y, Yang W, Fan Y (2016) Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content. Plant Physiol Bioch 106:1–10

    Article  CAS  Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC (2009) Arabidopsis IRT3 Is a zinc-regulated and plasma membrane localized zinc/iron transporter. N Phytol 182:392–404

    Article  CAS  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Lo JC, Tsednee M, Lo YC, Yang SC, Hu JM, Ishizaki K, Kohchi T, Lee DC, Yeh KC (2016) Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. New Phytol 211:569

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen LI, Palmgren MG (2014) Many rivers to cross: the journey of zinc from soil to seed. Front Plant Sci 5:30

    PubMed  PubMed Central  Google Scholar 

  • Rubén RÁ, Hamdi EJ, Gert W, Anunciación A, Oliver F, Javier A, Ana ÁF (2011) Metabolite profile changes in xylem sap and leaf extracts of strategy i plants in response to iron deficiency and resupply. Front Plant Sci 2:1085–1091

    Google Scholar 

  • Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL, Huang JL, Yeh KC (2011) Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana—the role in zinc tolerance. New Phytol 190:125

    Article  CAS  PubMed  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco R, Zharkikh AJ, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF (2013) Cellular iron homeostasis and metabolism in plant. Front. Plant Sci 4:490

    PubMed  PubMed Central  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  CAS  PubMed  Google Scholar 

  • Zha Q, Wang Y, Zhang XZ, Han ZH (2014) Both immanently high active iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus xiaojinensis. Plant Sci 214:47–56

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. David Eide (Nutritional Science Program, University of Missouri, Columbia, USA) and Dr. Jingtang Chen (Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, China) for providing the yeast strains DEY1453, ZHY3, the wild type strain DY1455 and yeast expression vector pFL61; This work was supported by the National Natural Science Foundation of China [31572083]; funds of Shandong “Double Tops” Program [SYL2017YSTD01 to Y. W.] and the Natural Science Foundation of Shandong Province [ZR2014CQ055].

Author information

Authors and Affiliations

Authors

Contributions

Designed the experiments: XM, WL and YHZ. Performed the experiments: XCM. Analyzed the data: XCM, HC, HL, RQ, KY and RZ, Wrote the paper: XCM, HL.

Corresponding authors

Correspondence to Wei Lv or Yuanhu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 13597 kb)

Supplementary material 2 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Liu, H., Cao, H. et al. Genome-wide analysis of zinc- and iron-regulated transporter-like protein family members in apple and functional validation of ZIP10. Biometals 32, 657–669 (2019). https://doi.org/10.1007/s10534-019-00203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00203-6

Keywords

Navigation