Skip to main content
Log in

Tutte polynomials of alternating polycyclic chains

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Tutte poynomial T(Gxy) of a graph G is a two-variable graph polynomial, and it gives interesting information about the graph. Many chemically interesting polycyclic polymers can be modeled by uniform or non-uniform polycyclic graphs. In this paper, we consider the Tutte poynomial of several classes of alternating polycyclic chains which contain phenylene chains and their dicyclobutadieno derivatives as special cases. Further, explicit closed formula of the number of spanning trees, the number of spanning forests and the number of spanning connected subgraphs of phenylenes (resp. the dicyclobutadieno derivatives of phenylenes) are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Bollobás, Modern Graph Theory (Springer, New York, 1998)

    Book  Google Scholar 

  2. C. Brennan, T. Mansour, E. Mphako-Banda, Tutte polynomials of wheels via generating functions. Bull. Iran. Math. Soc. 39, 881–891 (2013)

    Google Scholar 

  3. S. Chang, R. Shrock, Tutte polynomials and related asymptotic limiting functions for recursive families of graphs. Adv. Appl. Math. 32, 44–87 (2004)

    Article  Google Scholar 

  4. H. Chen, H. Deng, Tutte polynomial of scale-free networks. J. Stat. Phys. 163, 714–732 (2016)

    Article  Google Scholar 

  5. J. Chapman, J. Foos et al., Pairwise disagreements of Kekulé, Clar, and Fries numbers for benzenoids: a mathematical and computational investigation. MATCH Commun. Math. Comput. Chem. 80, 189–206 (2018)

    Google Scholar 

  6. A.A. Dobrynin, A.Y. Vesnin, On a recursive polynomial graph invariant for chains of polygons. Vychisl. Sist. 155, 87–102 (1996)

    Google Scholar 

  7. A.A. Dobrynin, A.Y. Vesnin, On deletion-contraction polynomials for polycyclic chains. MATCH Commun. Math. Comput. Chem. 72, 845–864 (2014)

    Google Scholar 

  8. H. Deng, J. Yang, F. Xia, A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes. Comput. Math. Appl. 61, 3017–3023 (2011)

    Article  Google Scholar 

  9. A. Donno, D. Iacono, The Tutte polynomial of the Sierpiński and Hanoi graphs. Adv. Geom. 13, 663–694 (2013)

    Article  Google Scholar 

  10. T. Došlić, Planar polycyclic graphs and their Tutte polynomials. J. Math. Chem. 51, 1599–1607 (2013)

    Article  Google Scholar 

  11. T. Došlić, On the number of spanning trees in alternating polycyclic chains. J. Math. Chem. 56, 2794–2800 (2018)

    Article  Google Scholar 

  12. J. Ellis-Monaghan, C. Merino, Graph polynomial and their applications I: the Tutee polynomial, in Structural Analysis of Complex Networks, ed. by M. Dehmer (Birkhauser, Boston, 2011)

    Google Scholar 

  13. G.H. Fath-Tabar, Z. Gholam-Rezaei, A.R. Ashrafi, On the Tutte polynomial of benzenoid chains. Iran. J. Math. Chem. 3, 113–119 (2012)

    CAS  Google Scholar 

  14. D. Garijo, M.E. Gegúndez, A. Márquez, M.P. Revuelta, F. Sagols, Computing the Tutte polynomial of Archimedean tilings. Appl. Math. Comput. 242, 842–885 (2014)

    Google Scholar 

  15. H. Gong, X. Jin, Potts model partition functions on two families of fractal lattices. Physica A 414, 143–153 (2014)

    Article  Google Scholar 

  16. H. Gong, X. Jin, F. Zhang, Tutte polynomials for benzenoid systems with one branched hexagon. J. Math. Chem. 54, 1057–1071 (2016)

    Article  CAS  Google Scholar 

  17. H. Gong, X. Jin, F. Zhang, Erratum to: Tutte polynomials for benzenoid systems with one branched hexagon. J. Math. Chem. 54, 1748–1749 (2016)

    Article  CAS  Google Scholar 

  18. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)

    Book  Google Scholar 

  19. H. Hosoya, On some counting polynomials in chemistry. Discret. Appl. Math. 19, 239–257 (1988)

    Article  Google Scholar 

  20. F. Jaeger, D. Vertigan, D. Welsh, On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108, 35–53 (1990)

    Article  Google Scholar 

  21. S. Jaeger, L. Radovic, R. Sazdanovic, Tutte and Jones polynomials of links, polyominoes and graphical recombination patterns. J. Math. Chem. 49, 79–94 (2011)

    Article  Google Scholar 

  22. J.V. Knop, N. Trinajstic, Chemical graph theory. II. On the graph theoretical polynomials of conjugated structures. Int. J. Quantum Chem. 18, 503–520 (1980)

    Article  Google Scholar 

  23. F. Li, H. Broersma, J. Rada, Y. Sun, Extremal benzenoid systems for two modified versions of the Randić index. Appl. Math. Comput. 337, 14–24 (2018)

    Google Scholar 

  24. W. Li, Z. Qin, H. Zhang, Extremal hexagonal chains with respect to the coefficients sum of the permanental polynomial. Appl. Math. Comput. 291, 30–38 (2016)

    Google Scholar 

  25. Y. Liao, A. Fang, Y. Hou, The Tutte polynomial of an infinite family of outerplanar, small-world and self-similar graphs. Physica A 392, 4584–4593 (2013)

    Article  Google Scholar 

  26. Y. Liao, Y. Hou, X. Shen, Tutte polynomial of a small-world Farey graph. Europhys. Lett. 104, 5065–5083 (2013)

    Article  Google Scholar 

  27. Y. Liao, Y. Hou, X. Shen, Tutte polynomial of the Apollonian network. J. Stat. Mech. Theory E 10, P10043 (2014)

    Article  Google Scholar 

  28. E. Mphako-Banda, Tutte polynomials of flower graphs. Bull. Iran. Math. Soc. 35, 179–190 (2009)

    Google Scholar 

  29. Y. Peng, S. Li, On the Kirchhoff index and the number of spanning trees of linear phenylenes. MATCH Commun. Math. Comput. Chem. 77, 756–780 (2017)

    Google Scholar 

  30. R. Shrock, Exact Potts model partition functions for ladder graphs. Physica A 283, 388–446 (2000)

    Article  CAS  Google Scholar 

  31. R. Shrock, Exact Potts/Tutte polynomials for polygon chain graphs. J. Phys. A 44, 145002 (2011)

    Article  Google Scholar 

  32. W.T. Tutte, A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)

    Article  Google Scholar 

  33. N. Tratnik, Formula for calculating the Wiener polarity index with applications to benzenoid graphs and phenylenes. J. Math. Chem. 57, 370–383 (2019)

    Article  CAS  Google Scholar 

  34. C. Xiao, H. Chen, A.M. Raigorodskii, A connection between the Kekulé structures of pentagonal chains and the Hosoya index of caterpillar trees. Discret. Appl. Math. 232, 230–234 (2017)

    Article  Google Scholar 

  35. J. Zhang, H. Deng, S. Chen, Second order Randić index of phenylenes and their corresponding hexagonal squeeze. J. Math. Chem. 42, 941–947 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Hunan Provincial Natural Science Foundation of China (2018JJ2249) and Hunan Provincial Innovation Foundation for Postgraduate (CX2017B170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Guo, Q. Tutte polynomials of alternating polycyclic chains. J Math Chem 57, 2248–2260 (2019). https://doi.org/10.1007/s10910-019-01069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01069-2

Keywords

Navigation