Skip to main content
Log in

A new scale of atomic static dipole polarizability invoking other periodic descriptors

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Knowledge of the nature of a chemical reactivity descriptor holds immense value to theoretical scientists. An appreciable number of works have been carried out in this realm. Polarizability (α) is one amongst such constructs. Fundamentally, it is a linear response of a systems electron cloud to an external applied electric field. The concept of polarizability is being widely adopted in the contemporary world of chemistry; however a suitable scale of measurement of atomic polarizability is still to be designed. In this work, an ansatz to compute atomic static dipole polarizability is proposed considering the conjoint action of absolute radius (r) and electronegativity (χ) for 103 elements of periodic table. We have evaluated the data invoking regression analysis. The computed data mirrors the periodicity remarkably satisfying all the sine qua non of a standard scale of polarizability. It presents an excellent quantitative correlation with ionization energy. Further, molecular polarizability (αm) is determined conceptualizing the property of additivity. A superior correlation between theoretical vis-à-vis existing molecular polarizabilities is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Dalgarno, Adv. Phys. 11, 281–315 (1962)

    Article  CAS  Google Scholar 

  2. K.D. Bonin, V.V. Kresin, Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  3. J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B: At. Mol. Opt. Phys. 43, 202001 (2010)

    Article  CAS  Google Scholar 

  4. H. Gould, T.M. Miller, Adv. At. Mol. Opt. Phys. 51, 343–361 (2005)

    Article  CAS  Google Scholar 

  5. M.S. Safronova, J. Mitroy, C.W. Clark, M.G. Kozlov, AIP Conf. Proc. 1642, 81–89 (2015)

    Article  CAS  Google Scholar 

  6. C.J. Jameson, A.D. Buckingham, J. Chem. Phys. 73, 5684–5692 (1980)

    Article  CAS  Google Scholar 

  7. N.B. Delone, V.P. Krainov, Phys. Usp. 42, 669–687 (1999)

    Article  CAS  Google Scholar 

  8. R.G. Pearson, J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  9. K.D. Sen (ed.), Chemical Hardness: Structure and Bonding (Springer, Berlin, 1993)

    Google Scholar 

  10. C.K. Jørgensen, J.B. Neilands, R.S. Nyholm, D. Reinen, R.J.P. Williams (eds.), Structure and Bonding: Structure and Bonding (Springer, Berlin, 1967)

    Google Scholar 

  11. J.E. Huheey, J. Phys. Chem. 69, 3284–3291 (1965)

    Article  CAS  Google Scholar 

  12. J.E. Huheey, J. Org. Chem. 36, 204–205 (1971)

    Article  CAS  Google Scholar 

  13. P. Politzer, J.S. Murray, M.C. Concha, P. Jin, Collect. Czech. Chem. Commun. 72, 51–63 (2007)

    Article  CAS  Google Scholar 

  14. P. Politzer, J. Chem. Phys. 86, 1072–1073 (1987)

    Article  CAS  Google Scholar 

  15. P. Politzer, J.E. Huheey, J.S. Murray, M. Grodzicki, J. Mol. Struct.: THEOCHEM 259, 99–120 (1992)

    Article  Google Scholar 

  16. T.K. Ghanty, S.K. Ghosh, J. Phys. Chem. 97, 4951–4953 (1993)

    Article  CAS  Google Scholar 

  17. S. Hati, D. Datta, J. Phys. Chem. 98, 10451–10454 (1994)

    Article  CAS  Google Scholar 

  18. Y. Simón-Manso, P. Fuentealba, J. Phys. Chem. A 102, 2029–2032 (1998)

    Article  Google Scholar 

  19. P. Fuentealba, O. Reyes, THEOCHEM 282, 65–70 (1993)

    Article  Google Scholar 

  20. T. Brinck, J.S. Murray, P. Politzer, J. Chem. Phys. 98, 4305–4306 (1993)

    Article  CAS  Google Scholar 

  21. I.K. Dmitrieva, G.I. Plindov, Phys. Scr. 27, 402–406 (1983)

    Article  CAS  Google Scholar 

  22. J.K. Nagle, J. Am. Chem. Soc. 112, 4741–4747 (1990)

    Article  CAS  Google Scholar 

  23. K.J. Miller, J. Am. Chem. Soc. 112, 8543–8551 (1990)

    Article  CAS  Google Scholar 

  24. P. Calaminici, K. Jug, A.M. Köster, J. Chem. Phys. 109, 7756–7763 (1998)

    Article  CAS  Google Scholar 

  25. M. Swart, P.T. van Duijnen, J.G. Snijders, J. Mol. Struct.: THEOCHEM 458, 11–17 (1998)

    Article  Google Scholar 

  26. S. Glasstone, Textbook of Physical Chemistry (Macmillan, London, 1951)

    Google Scholar 

  27. J.J.C. Teixeira-Dias, J.N. Murrell, Mol. Phys. 19, 329–335 (1970)

    Article  CAS  Google Scholar 

  28. K.M. Gough, J. Chem. Phys. 91, 2424–2432 (1989)

    Article  CAS  Google Scholar 

  29. P. Jin, J.S. Murray, P. Politzer, Int. J. Quantum Chem. 96, 394–401 (2004)

    Article  CAS  Google Scholar 

  30. P. Politzer, J.S. Murray, M.E. Grice, T. Brinck, S. Ranganathan, J. Chem. Phys. 95, 6699–6704 (1991)

    Article  CAS  Google Scholar 

  31. B. Fricke, J. Chem. Phys. 84, 862–866 (1986)

    Article  CAS  Google Scholar 

  32. P. Politzer, P. Jin, J.S. Murray, J. Chem. Phys. 117, 8197–8202 (2002)

    Article  CAS  Google Scholar 

  33. M.J. Stott, E. Zaremba, Phys. Rev. A 21, 12–23 (1980)

    Article  CAS  Google Scholar 

  34. A. Vela, J.L. Gázquez, J. Am. Chem. Soc. 112, 1490–1492 (1990)

    Article  CAS  Google Scholar 

  35. S. Fraga, J. Karwowski, K.M.S. Saxena, At. Data Nucl. Data Tables 12, 467–477 (1973)

    Article  CAS  Google Scholar 

  36. R.R. Teachout, R.T. Pack, At. Data Nucl. Data Tables 3, 195–214 (1971)

    Article  Google Scholar 

  37. G. Maroulis (ed.), Theoretical Approaches to the Calculation of Electric Polarizability (Imperial College Press, London, 2006)

    Google Scholar 

  38. D.R. Bates, B. Bederson (eds.), Advances in Atomic and Molecular Physics (Academic Press, London, 1978)

    Google Scholar 

  39. D. Bates, B. Bederson (eds.), Advances in Atomic and Molecular Physics (Academic Press, London, 1989)

    Google Scholar 

  40. P. Schwerdtfeger, J.K. Nagle, Mol. Phys. 117, 1200–1225 (2019)

    Article  CAS  Google Scholar 

  41. K.D. Bonin, M.A. Kadar-Kallen, Int. J. Mod. Phys. B 8, 3313–3370 (1994)

    Article  CAS  Google Scholar 

  42. P.K. Chattaraj, B. Maiti, J. Chem. Educ. 78, 811–813 (2001)

    Article  CAS  Google Scholar 

  43. P. Politzer, J.S. Murray, F.A. Bulat, J. Mol. Model. 16, 1731–1742 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. P.G. Jasien, G. Fitzgerald, J. Chem. Phys. 93, 2554–2560 (1992)

    Article  Google Scholar 

  45. F. Sim, D.R. Salahub, Int. J. Quantum Chem. 43, 463–479 (1992)

    Article  CAS  Google Scholar 

  46. J. Guan, P. Duffy, J.T. Carter, D.P. Chong, K.C. Casida, M.E. Casida, M. Wrinn, J. Chem. Phys. 98, 4753–4765 (1993)

    Article  CAS  Google Scholar 

  47. S.M. Colwell, C.W. Murray, N.C. Handy, R.D. Amos, Chem. Phys. Lett. 210, 261–268 (1993)

    Article  CAS  Google Scholar 

  48. N. Matsuzawa, D.A. Dixon, J. Phys. Chem. 98, 2545–2554 (1994)

    Article  CAS  Google Scholar 

  49. A.M. Lee, S.M. Colwell, J. Chem. Phys. 101, 9704–9709 (1994)

    Article  CAS  Google Scholar 

  50. D.A. Dixon, N. Matsuzawa, J. Phys. Chem. 98, 3967–3977 (1994)

    Article  CAS  Google Scholar 

  51. J. Guan, M.E. Casida, A.M. Köster, D.R. Salahub, Phys. Rev. B 52, 2184–2200 (1995)

    Article  CAS  Google Scholar 

  52. N. Matsuzawa, M. Ata, D.A. Dixon, J. Phys. Chem. 99, 7698–7706 (1995)

    Article  CAS  Google Scholar 

  53. S.A.C. McDowell, R.D. Amos, N.C. Handy, Chem. Phys. Lett. 235, 1–4 (1995)

    Article  CAS  Google Scholar 

  54. P.K. Chattaraj, S. Sengupta, J. Phys. Chem. 100, 16126–16130 (1996)

    Article  CAS  Google Scholar 

  55. P.K. Chattaraj, S. Sengupta, J. Phys. Chem. A 42, 7893–7900 (1997)

    Article  Google Scholar 

  56. P.K. Chattaraj, A. Poddar, J. Phys. Chem. A 102, 9944–9948 (1998)

    Article  CAS  Google Scholar 

  57. P.K. Chattaraj, A. Poddar, J. Phys. Chem. A 103, 1274–1275 (1999)

    Article  CAS  Google Scholar 

  58. T.K. Ghanty, S.K. Ghosh, J. Phys. Chem. 100, 12295–12298 (1996)

    Article  CAS  Google Scholar 

  59. R.G. Parr, P.K. Chattaraj, J. Am. Chem. Soc. 113, 1854–1855 (1991)

    Article  CAS  Google Scholar 

  60. R.G. Pearson, Chemtracts-Inorg. Chem. 3, 317–333 (1991)

    CAS  Google Scholar 

  61. P.K. Chattaraj, G.H. Liu, R.G. Parr, Chem. Phys. Lett. 237, 171–176 (1995)

    Article  CAS  Google Scholar 

  62. P.K. Chattaraj, Proc. Indian Natl. Sci. Acad. Part A 62, 513–532 (1996)

    CAS  Google Scholar 

  63. R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids (Wiley, Weinheim, 1997)

    Book  Google Scholar 

  64. S. Liu, R.G. Parr, J. Chem. Phys. 106, 5578–5586 (1997)

    Article  CAS  Google Scholar 

  65. P.K. Chattaraj, P. Fuentealba, P. Jaque, A. Toro-Labbe, J. Phys. Chem. A 103, 9307–9312 (1999)

    Article  CAS  Google Scholar 

  66. P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 122, 2010–2018 (2000)

    Article  CAS  Google Scholar 

  67. P.K. Chattaraj, A. Poddar, J. Phys. Chem. A 103, 8691–8699 (1999)

    Article  CAS  Google Scholar 

  68. P. Fuentealba, Y. Simón-Manso, P.K. Chattaraj, J. Phys. Chem. A 104, 3185–3187 (2000)

    Article  CAS  Google Scholar 

  69. P.K. Chattaraj, S. Sengupta, J. Phys. Chem. A 103, 6122–6126 (1999)

    Article  CAS  Google Scholar 

  70. P.K. Chattaraj, P. Fuentealba, B. Gómez, R. Contreras, J. Am. Chem. Soc. 122, 348–351 (2000)

    Article  CAS  Google Scholar 

  71. T. Ruiz-Anchondo, N. Flores-Holguín, D. Glossman-Mitnik, Molecules 15, 4490–4510 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  73. T.H. Lowry, K.S. Richardson, Mechanism and Theory in Organic Chemistry (Harper & Row, New York, 1987)

    Google Scholar 

  74. F.A. Carey, R.J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms (Springer, New York, 2007)

    Google Scholar 

  75. L. Pauling, J. Am. Chem. Soc. 54, 3570–3582 (1932)

    Article  CAS  Google Scholar 

  76. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960)

    Google Scholar 

  77. P. Szarek, W. Grochala, J. Phys. Chem. A 118, 10281–10287 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. M.V. Putz, Int. J. Mol. Sci. 9, 1050–1095 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. D.C. Ghosh, N. Islam, Int. J. Quantum Chem. 111, 40–51 (2011)

    Article  CAS  Google Scholar 

  80. T. Chakraborty, K. Gazi, D.C. Ghosh, Mol. Phys. 108, 2081–2092 (2010)

    Article  CAS  Google Scholar 

  81. D.C. Ghosh, T. Chakraborty, J. Mol. Struct.: THEOCHEM 906, 87–93 (2009)

    Article  CAS  Google Scholar 

  82. I.K. Dmitrieva, G.I. Plindov, J. Appl. Spect. 44, 4–9 (1986)

    Article  Google Scholar 

  83. H.J. Bohórquez, R.J. Boyd, Chem. Phys. Lett. 480, 127–131 (2009)

    Article  CAS  Google Scholar 

  84. R.L. DeKock, J.R. Strikwerda, E.X. Yu, Chem. Phys. Lett. 547, 120–126 (2012)

    Article  CAS  Google Scholar 

  85. U. Hohm, A.J. Thakkar, J. Phys. Chem. A 116, 697–703 (2012)

    Article  CAS  PubMed  Google Scholar 

  86. A. Kramida, Yu. Ralchenko, and J. Reader, NIST ASD Team, NIST Atomic Spectra Database, Version 5.6.1, [Online] (2018). Available: https://physics.nist.gov/asd [2019, April 4]. National Institute of Standards and Technology, Gaithersburg, MD

  87. Y.K. Kang, M.S. Jhon, Theor. Chim. Acta 61, 41–48 (1982)

    Article  CAS  Google Scholar 

  88. K.J. Miller, J. Am. Chem. Soc. 112, 8533–8542 (1990)

    Article  CAS  Google Scholar 

  89. P.T. van Duijnen, M. Swart, J. Phys. Chem. A 102, 2399–2407 (1998)

    Article  Google Scholar 

  90. N.P. Labello, A.M. Ferreira, H.A. Kurtz, J. Phys. Chem. A 110, 13507–13513 (2006)

    Article  CAS  PubMed  Google Scholar 

  91. W.H. Xu, P. Pyykko, Phys. Chem. Chem. Phys. 18, 17351–17355 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Manipal University Jaipur for providing computational and research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, H., Chakraborty, T. & Suhag, V. A new scale of atomic static dipole polarizability invoking other periodic descriptors. J Math Chem 57, 2142–2153 (2019). https://doi.org/10.1007/s10910-019-01055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01055-8

Keywords

Navigation