Skip to main content
Log in

FoxN1 mediates thymic cortex–medulla differentiation through modifying a developmental pattern based on epithelial tubulogenesis

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The mechanisms that determine the commitment of thymic epithelial precursors to the two major thymic epithelial cell lineages, cTECs and mTECs, remain unknown. Here we show that FoxN1 nu mutation, which abolishes thymic epithelium differentiation, results in the formation of a tubular branched structure according to a typical branching morphogenesis and tubulogenesis developmental pattern. In the presence of FoxN1, in alymphoid NSG and fetal Ikaros−/− thymi, there is no lumen formation and only partial apical differentiation. This initiates cortex–medulla differentiation inducing expression of medullary genes in the apically differentiating cells and of cortical genes in the non-apically differentiating cells, which will definitely differentiate in wt and postnatal Ikaros−/− mice. Therefore, the thymus development is based on a branching morphogenesis and tubulogenesis developmental pattern: FoxN1 expression in the thymic primordium inhibits tubulogenesis and induces the expression of genes involved in TEC differentiation, which culminates with the expression of functional cell markers, i.e., MHCII, CD80, Aire in both postnatal Ikaros−/− and WT thymi after arrival of lymphoid progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramson J, Anderson G (2017) Thymic epithelial cells. Annu Rev Immunol 35:85–118

    Article  CAS  PubMed  Google Scholar 

  • Akiyama N, Takizawa N, Miyauchi M et al (2016) Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator. J Exp Med 213:1441–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves NL, Takahama Y, Ohigashi I et al (2014) Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol 44:16–22

    Article  CAS  PubMed  Google Scholar 

  • Andrew DJ, Ewald AJ (2010) Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol 341:34–55

    Article  CAS  PubMed  Google Scholar 

  • Baik S, Jenkinson EJ, Lane PJ, Anderson G, Jenkinson WE (2013) Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors. Eur J Immunol 43:589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baik S, Sekai M, Hamazaki Y, Jenkinson WE, Anderson G (2016) Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK(+) medullary epithelial progenitors. Eur J Immunol 46:857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    Article  CAS  PubMed  Google Scholar 

  • Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC (2014) An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 16:902–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderon L, Boehm T (2012) Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell 149:159–172

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley J, Erickson M, Farr AG (2005a) An organized medullary epithelial structure in the normal thymus expresses molecules of respiratory epithelium and resembles the epithelial thymic rudiment of nude mice. J Immunol 175:4331–4337

    Article  CAS  PubMed  Google Scholar 

  • Dooley J, Erickson M, Roelink H, Farr AG (2005b) Nude thymic rudiment lacking functional FoxN1 resembles respiratory epithelium. Dev Dyn 233:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ceca J, Jimenez E, Alfaro D et al (2009) On the role of Eph signalling in thymus histogenesis; EphB2/B3 and the organizing of the thymic epithelial network. Int J Dev Biol 53:971–982

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Wilson VA, Blair NF et al (2004) Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5:546–553

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Rahman M, Cheng L, Zhang S, Tvinnereim A, Su DM (2011) Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium. J Mol Med 89:263–277

    Article  CAS  PubMed  Google Scholar 

  • Hall M (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18

    Article  Google Scholar 

  • Hamazaki Y, Fujita H, Kobayashi T et al (2007) Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8:304–311

    Article  CAS  PubMed  Google Scholar 

  • Hick AC, van Eyll JM, Cordi S et al (2009) Mechanism of primitive duct formation in the pancreas and submandibular glands: a role for SDF-1. BMC Dev Biol 9:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hieda Y, Iwai K, Morita T, Nakanishi Y (1996) Mouse embryonic submandibular gland epithelium loses its tissue integrity during early branching morphogenesis. Dev Dyn 207:395–403

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka Y, Nitta T, Ohigashi I et al (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29:438–450

    Article  CAS  PubMed  Google Scholar 

  • Hogan BL, Kolodziej PA (2002) Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet 3:513–523

    Article  CAS  PubMed  Google Scholar 

  • Hogg NA, Harrison CJ, Tickle C (1983) Lumen formation in the developing mouse mammary gland. J Embryol Exp Morphol 73:39–57

    CAS  PubMed  Google Scholar 

  • Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J Immunol 169:2842–2845

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Takada K, Takahama Y (2017) Antigen processing and presentation in the thymus: implications for T cell repertoire selection. Curr Opin Immunol 46:53–57

    Article  CAS  PubMed  Google Scholar 

  • Lal-Nag M, Morin PJ (2009) The claudins. Genome Biol 10:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mouri Y, Yano M, Shinzawa M et al (2011) Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. J Immunol 186:5047–5057

    Article  CAS  PubMed  Google Scholar 

  • Muñoz JJ, Zapata AG (2018) Epithelial development based on a branching morphogenesis program: the special condition of thymic epithelium. In: Heinbockel T, Shields VDC (eds) Histology. IntechOpen, London

  • Munoz JJ, Cejalvo T, Tobajas E, Fanlo L, Cortes A, Zapata AG (2015) 3D immunofluorescence analysis of early thymic morphogenesis and medulla development. Histol Histopathol 30:589–599

    CAS  PubMed  Google Scholar 

  • Nanba D, Nakanishi Y, Hieda Y (2001) Changes in adhesive properties of epithelial cells during early morphogenesis of the mammary gland. Dev Growth Differ 43:535–544

    Article  CAS  PubMed  Google Scholar 

  • Nowell CS, Bredenkamp N, Tetelin S et al (2011) Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet 7:e1002348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odenwald MA, Choi W, Buckley A et al (2017) ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci 130:243–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohigashi I, Zuklys S, Sakata M et al (2013) Aire-expressing thymic medullary epithelial cells originate from beta5t-expressing progenitor cells. Proc Natl Acad Sci USA 110:9885–9890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill KE, Bredenkamp N, Tischner C et al (2016) FoxN1 is dynamically regulated in thymic epithelial cells during embryogenesis and at the onset of thymic involution. PLoS One 11:e0151666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prowse DM, Lee D, Weiner L et al (1999) Ectopic expression of the nude gene induces hyperproliferation and defects in differentiation: implications for the self-renewal of cutaneous epithelia. Dev Biol 212:54–67

    Article  CAS  PubMed  Google Scholar 

  • Ripen AM, Nitta T, Murata S, Tanaka K, Takahama Y (2011) Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit beta5t. Eur J Immunol 41:1278–1287

    Article  CAS  PubMed  Google Scholar 

  • Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    Article  CAS  PubMed  Google Scholar 

  • Rossi SW, Kim MY, Leibbrandt A et al (2007) RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204:1267–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Schluter MA, Margolis B (2009) Apical lumen formation in renal epithelia. J Am Soc Nephrol 20:1444–1452

    Article  PubMed  Google Scholar 

  • Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M (2010) A high-level 3D visualization API for java and ImageJ. BMC Bioinform 11:274

    Article  Google Scholar 

  • Shakib S, Desanti GE, Jenkinson WE, Parnell SM, Jenkinson EJ, Anderson G (2009) Checkpoints in the development of thymic cortical epithelial cells. J Immunol 182:130–137

    Article  CAS  PubMed  Google Scholar 

  • Takahama Y, Tanaka K, Murata S (2008) Modest cortex and promiscuous medulla for thymic repertoire formation. Trends Immunol 29:251–255

    Article  CAS  PubMed  Google Scholar 

  • Takahama Y, Ohigashi I, Baik S, Anderson G (2017) Generation of diversity in thymic epithelial cells. Nat Rev Immunol 17:295–305

    Article  CAS  PubMed  Google Scholar 

  • Ucar A, Ucar O, Klug P et al (2014) Adult thymus contains FoxN1(−) epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages. Immunity 41:257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya HJ, Briones Leon A, Blackburn CC (2016) FOXN1 in thymus organogenesis and development. Eur J Immunol 46:1826–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villasenor A, Chong DC, Henkemeyer M, Cleaver O (2010) Epithelial dynamics of pancreatic branching morphogenesis. Development 137:4295–4305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JH, Nichogiannopoulou A, Wu L et al (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5:537–549

    Article  CAS  PubMed  Google Scholar 

  • White AJ, Withers DR, Parnell SM et al (2008) Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input. Eur J Immunol 38:942–947

    Article  CAS  PubMed  Google Scholar 

  • Whyte J, Thornton L, McNally S et al (2010) PKCzeta regulates cell polarisation and proliferation restriction during mammary acinus formation. J Cell Sci 123:3316–3328

    Article  CAS  PubMed  Google Scholar 

  • Zuklys S, Handel A, Zhanybekova S et al (2016) FoxN1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol 17:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants BFU2013-41112-R and Cell Therapy Network (RD 16/0011/0002) from the Spanish Ministry of Economy and Competitiveness. We thank the Cytometry and Fluorescence Microscopy Centre of Complutense University for the use of its facilities. We thank the “Developmental Studies Hybridoma Bank” of the University of Iowa and Monash University Medical Centre, Melbourne, Australia for supplying anti-K8 keratin and anti-MTS10 antibodies, respectively. We also thank Dr. Josep Maria Canals (Barcelona University) for providing Ikaros−/− mice. Finally, we thank Dr. Nuno L. Alves (IBMC, Porto) for his critical reading of the manuscript and comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan J. Muñoz or Agustín G. Zapata.

Ethics declarations

Conflict of interest

Authors declare no competing or financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2019_1818_MOESM1_ESM.tif

Supplementary material 1. Figure S1 Proliferation of nude thymic epithelial cells throughout development. Sections from thymic lobes of the indicated ages were stained for E-cad, Cld3/4, Ki67 and nuclear staining (Hoechst 33342). Cld+ and Cld− regions were segmented as shown in the examples. Nuclei within each region were segmented and counted as in the examples. Note the distribution of proliferating cells through the whole epithelial mass, the absence of proliferating tips and, also, the lower proportion of proliferating cells in E18 and 3PN thymic sections. Scale bar = 50 μm E13.5–E15.5; = 100 μm E18.5, 3PN; = 150 μm 3PN (TIFF 280221 kb)

418_2019_1818_MOESM2_ESM.tif

Supplementary material 2. Figure S2 FoxN1 expression in NSG thymus inhibits ZO1 expression and tight junction organization. Section from 15 days postnatal nude thymus and 6 days postnatal NSG thymus were stained for ZO1, E-cad and Cld3/4. Merge images are shown. Note the arrangement of ZO1 expression in tight junctions in nude thymus. In NSG thymus, ZO1 expression is found in some thymic cysts (white arrows) and in blood vessels (yellow arrows) while no expression or traces are found in most medullary areas (arrowheads) where nonplorarized Cld3/4 expression is found (TIFF 172494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, J.J., Tobajas, E., Juara, S. et al. FoxN1 mediates thymic cortex–medulla differentiation through modifying a developmental pattern based on epithelial tubulogenesis. Histochem Cell Biol 152, 397–413 (2019). https://doi.org/10.1007/s00418-019-01818-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-019-01818-z

Keywords

Navigation