Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T20:14:06.370Z Has data issue: false hasContentIssue false

Preparation and Characterization of High-Viscosity Montmorillonite

Published online by Cambridge University Press:  01 January 2024

Limei Wu
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Xiaolong Wang
Affiliation:
Procurement and Bidding Office, Shenyang Jianzhu University, Shenyang 110168, China
Changwei Xu*
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Fei Gao
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Lili Gao
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Guocheng Lv
Affiliation:
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Li Yin
Affiliation:
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
*
*E-mail address of corresponding author: 1301663317@qq.com

Abstract

Hydrophobicity, high viscosity, and dispersion are important properties for organo-montmorillonites, and all organo-montmorillonite configurations have yet to be fully characterized with respect to this property. High-viscosity montmorillonite (Mnt) is useful in gels and as an adsorber. The current study focused on modifying Mnt using organic cations and anions of various chain lengths in batch experiments with various concentrations and ratios. The viscosity of organic Mnt reached up to 395 mP.s. Molecular dynamics simulations and X-ray diffraction (XRD) were used to identify the conditions and arrangement of organic cations and anions in the Mnt interlayer area. The intercalation mechanism of organic cations and anions was also determined, providing a theoretical basis for the preparation of high-viscosity Mnt.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018

References

Alemdar, A. Őztekin, N. Gűngőr, N., Effects of polyethyleneimine adsorption on the rheological properties of purified bentonite suspensions Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005 252 9598 10.1016/j.colsurfa.2004.10.009.CrossRefGoogle Scholar
Austin, J. C. Perry, A. Richter, D. D. Schroeder, P. A., Modifications of 2:1 clay minerals in kaolinite-dominated ultisol under changing land-use regimes Clays and Clay Minerals 2018 66 6173.CrossRefGoogle Scholar
Bumbudsanpharoke, N. Lee, W. Choi, J. C. Park, S. J., Influence of montmorillonite nanoclay content on the optical, thermal, mechanical, and barrier properties of low-density polyethylene Clays and Clay Minerals 2017 65 387397 10.1346/CCMN.2017.064071.CrossRefGoogle Scholar
Dultz, S. Riebe, B. Bunnenberg, C., Temperature effects on iodine adsorption on organo-clay minerals: II. Structural effects Applied Clay Science 2005 28 1730 10.1016/j.clay.2004.01.005.CrossRefGoogle Scholar
Gűngőr, N. Alemdar, N. Atici, O., The effect of SDS surfactant on the flow and zeta potential of bentonite suspensions Materials Letters 2001 51 250254 10.1016/S0167-577X(01)00299-3.CrossRefGoogle Scholar
Günister, E. İşçi, S. Őztekin, N. Erim, F. B. Ece, ŐI Gůngőr, N., Effect of cationic surfactant adsorption on the rheological and surface properties of bentonite dispersions Journal of Colloid and Interface Science 2006 303 137141 10.1016/j.jcis.2006.07.021.CrossRefGoogle ScholarPubMed
He, H., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., & Yang, D. (2006) Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262271.CrossRefGoogle Scholar
Irannajad, M. Haghighi, H. K., Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics, and kinetics studies Clays and Clay Minerals 2017 65 5262 10.1346/CCMN.2016.064049.CrossRefGoogle Scholar
İşçi, S. Gűner, F. S. Güngör, N., Investigation of rheological and collodial properties of bentonitic clay dispersion in the presence of a cationic surfactant Progress in Organic Coatings 2005 54 2833 10.1016/j.porgcoat.2005.03.002.CrossRefGoogle Scholar
İşçi, S. Günister, E. Alemdar, A. Ece, ÖI Güngör, N., The influence of DTABr surfactant on the electrokinetic and rheological properties of soda-activated bentonite dispersions Materials Letters 2008 62 8184 10.1016/j.matlet.2007.03.113.CrossRefGoogle Scholar
Jeschke, F. Meleshyn, A., A Monte Carlo study of interlayer and surface structures of tetraphenylphosphonium-modified Na-montmorillonite Geoderma 2011 169 3340 10.1016/j.geoderma.2010.09.020.CrossRefGoogle Scholar
Kaci, A. Chaouche, M., Influence of bentonite clay on the rheological behaviour of fresh mortars Cement and Concrete Research 2011 41 373379 10.1016/j.cemconres.2011.01.002.CrossRefGoogle Scholar
Karataş, D. Tekin, A. Çelik, M. S., Density functional theory computation of organic compound penetration into sepiolite tunnels Clays and Clay Minerals 2017 65 113 10.1346/CCMN.2016.064043.CrossRefGoogle Scholar
Kwolek, T. Hodorowicz, M. Stadnicka, K. Czapkiewicz, J., Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite Journal of Colloid and Interface Science 2003 264 1 1419 10.1016/S0021-9797(03)00414-4.CrossRefGoogle ScholarPubMed
Lagaly, G., Layer charge heterogenerity in vermiculites Clays and Clay Mineral 1982 30 215222 10.1346/CCMN.1982.0300308.CrossRefGoogle Scholar
Lv, G. C. Liu, L. Li, Z. H. Liao, L. B. Liu, M. T., Probing the interactions between chlorpheniramine and 2:1 phyllosilicates Journal of Colloid and Interface Science 2012 374 218225 10.1016/j.jcis.2012.01.029.CrossRefGoogle Scholar
Martín Alfonso, J. E. Valencia, C. Franco, J. M., Composition-property relationship of gel-like dispersions based on organo-bentonite, recycled polypropylene and mineral oil for lubricant purposes Applied Clay Science 2014 87 1 265271 10.1016/j.clay.2013.11.024.CrossRefGoogle Scholar
Menezes, R. R. Marques, L. N. Campos, L. A. Ferreira, H. S. Santana, L. N., Use of statistical design to study the influence of CMC on the rheological properties of bentonite dispersions for water-based drilling fluids Applied Clay Science 2010 49 1320 10.1016/j.clay.2010.03.013.CrossRefGoogle Scholar
Ouhadi, V. R. Yong, R. N. Sedighi, M., Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite Applied Clay Science 2006 32 217231 10.1016/j.clay.2006.02.003.CrossRefGoogle Scholar
Pospíšil, M. Čapková, P. Weissmannová, H. Klika, Z. Trchová, M., Structure analysis of montmorillonite intercalated with rhodamine B: modeling and experiment Journal of Molecular Modeling 2003 9 1 3946 10.1007/s00894-002-0107-8.CrossRefGoogle ScholarPubMed
Tunç, S. Duman, O., The effect of different molecular weight of poly (ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008 317 9399 10.1016/j.colsurfa.2007.09.039.CrossRefGoogle Scholar
Vassilios, C. Kelessidis, C. Cassiani, P. Antonios, F., Application of Greek lignite as an additive for controlling rheological and filtration properties of water–bentonite suspensions at high temperatures: A review International Journal of Coal Geology 2009 77 394400 10.1016/j.coal.2008.07.010.Google Scholar
Wu, L. M. Tong, D. S. Zhao, L. Z., Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite Applied Clay Science 2014 95 3 7482 10.1016/j.clay.2014.03.014.CrossRefGoogle Scholar
Wu, L. M. Liao, L. M. Lv, G. C. Qin, F. X. Li, Z. H., Microstructure and process of intercalation of imidazolium ionic liquids into montmorillonite Chemical Engineering Journal 2014 236 306313 10.1016/j.cej.2013.09.063.CrossRefGoogle Scholar
Wu, L. M. Zhou, C. H. Tong, D. S. Yu, W. H. Wang, H., Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar Cellulose 2014 21 4 28452857 10.1007/s10570-014-0323-2.CrossRefGoogle Scholar
Wu, L. M. Yang, C. X. Mei, L. F. Qin, F. X. Liao, L. B. Lv, G. C., Microstructure of different chain length ionic liquids intercalated into montmorillonite: a molecular dynamics study Applied Clay Science 2014 99 266274 10.1016/j.clay.2014.07.004.CrossRefGoogle Scholar
Wungu, TDK Aspera, S. M. David, M. Y. Dipojono, H. K. Nakanishi, H. Kasai, H., Absorption of lithium in montmorillonite: a density functional theory (DFT) study Journal of Nanoscience and Nanotechnology 2011 11 4 27932801 10.1166/jnn.2011.3913.CrossRefGoogle ScholarPubMed
Yalçin, T. Alemdar, A. Ece, ÖI Güngör, N., By particle interactions and rheological properties of bentonites+ALS suspensions Materials Letters 2002 53 211215 10.1016/S0167-577X(01)00478-5.CrossRefGoogle Scholar
Yoshimoto, S. Ohashi, F. Kameyama, T., X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing Solid State Communications 2005 136 251256 10.1016/j.ssc.2005.08.017.CrossRefGoogle Scholar
Yu, W. H. Ren, Q. Q. Tong, D. S. Zhou, C. H. Wang, H., Clean production of CTAB-montmorillonite: formation mechanism and swelling behavior in xylene Applied Clay Science 2014 97-98 222234 10.1016/j.clay.2014.06.007.CrossRefGoogle Scholar
Yu, W. H. Zhu, T. T. Tong, D. S. Wang, M. Wu, Q. Q. Zhou, C. H., Preparation of organo-montmorillonites and the relationship between microstructure and swellability Clays and Clay Minerals 2017 65 417430 10.1346/CCMN.2017.064068.CrossRefGoogle Scholar
Zeng, Q. H. Yu, A. B. Lu, G. Q. Standish, R. K., Molecular dynamics simulation of organic−inorganic nanocomposites: layering behavior and interlayer structure of organoclays Chemistry of Materials 2003 15 25 47324738 10.1021/cm0342952.CrossRefGoogle Scholar
Zhou, Chun Hui, ChemInform Abstract: Strategies Towards Clay-Based Designer Catalysts for Green and Sustainable Catalysis ChemInform 2011 42 47 nono 10.1002/chin.201147260.CrossRefGoogle Scholar
Zhou, C. H. Keeling, J., Fundamental and applied research on clay minerals: From climate and environment to nanotechnology Applied Clay Science 2013 74 39 10.1016/j.clay.2013.02.013.CrossRefGoogle Scholar
Zhou, C. H., Shen, Z. F., Liu, L., & Liu, S. (2011). Preparation and functionality of clay-containing films. Journal of Materials Chemistry, 21(39), 1513215153.CrossRefGoogle Scholar
Zhou, C. H. Zhao, L. Z. Wang, A. Q. Chen, T. H. He, H. P., Current fundamental and applied research into clay minerals in China Applied Clay Science 2016 119 37 10.1016/j.clay.2015.07.043.CrossRefGoogle Scholar
Zhou, C. H. Zhou, Q. Wu, Q. Q. Petit, S. Jiang, X. C. Xia, S. T. Li, C. S. Yu, W. H., Modification, hybridization and applications of saponite: An overview Applied Clay Science 2019 168 136154 10.1016/j.clay.2018.11.002.CrossRefGoogle Scholar
Zhou, J. H. Lu, X. C. Zhu, X. Z. Liu, X. D. Wei, J. M. Zhou, Q., Interlayer structure and dynamics of HDTMA(+)-intercalated rectorite with and without water: a molecular dynamics study The Journal of Physical Chemistry C 2012 116 24 1307113078 10.1021/jp300029z.Google Scholar
Zhou, L. M. Chen, H. Jiang, X. H. Lu, F. Zhou, Y. Yin, W., Modification of montmorillonite surfaces using a novel class of cationic Gemini surfactants Journal of Colloid and Interface Science 2009 332 1 1621 10.1016/j.jcis.2008.12.051.CrossRefGoogle ScholarPubMed
Zhou, Q., Shen, W., Zhu, J.X., Zhu, R.L., He, H.P., Zhou, J.H., & Yuan, P. (2014). Structure and dynamic properties of water saturated CTMA-montmorillonite: molecular dynamics simulations. Applied Clay Science, 97, 6271.CrossRefGoogle Scholar
Zhu, T. T. Zhou, C. H. Kabwe, F. B. Wu, Q. Q. Li, C. S. Zhang, J. R., Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites Applied Clay Science 2019 169 4866 10.1016/j.clay.2018.12.006.CrossRefGoogle Scholar