Skip to main content
Log in

Rapid and Simple Identification of Free Magnesia in Steelmaking Slag Used for Road Construction Using Cathodoluminescence

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Reuse of steelmaking slags is important for the effective use of natural resources. Free magnesia (f-MgO) in steelmaking slag may cause serious problems because of a hydration reaction followed by expansion when it is reused for road construction. We present a promising method to identify f-MgO that causes volume expansion rapidly by investigating cathodoluminescence (CL) images and spectra of a steelmaking slag sample. f-MgO emitted red–orange luminescence from a peak at 755 nm. The mineral phases, 3CaO·SiO2 and 2CaO·SiO2, emitted red and yellow luminescence from peaks at 720  and 590 nm, respectively. No luminescence of FeO and 2CaO·Fe2O3 was detected. f-MgO changed its composition in the slag sample that was immersed in hot (70 °C) water for a week. f-MgO that was responsible for the volume expansion (combined content of FeO and MnO below 30 mass pct) retained a red–orange luminescence, whereas the other f-MgO lost luminescence. The CL intensity of the f-MgO that retained luminescence was more than 10 times larger than that of 3CaO·SiO2 and 2CaO·SiO2. Therefore, we can distinguish f-MgO that causes volume expansion by detecting the intense red–orange luminescence from the peak at 755 nm in the CL image within a few seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. 1. Y. Jiang, T.-C. Ling, C. Shi and S.-Y. Pan: Resour. Conserv. Recycl., 2018, vol. 136, pp. 187-197.

    Article  Google Scholar 

  2. 2. J. Li, S.Y. Pan, H. Kim, J.H. Linn and P.C. Chiang: J. Environ. Manage., 2015, vol. 162, pp. 158-70.

    Article  Google Scholar 

  3. 3. S.-Y. Pan, R. Adhikari, Y.-H. Chen, P. Li and P.-C. Chiang: J. Clean Prod., 2016, vol. 137, pp. 617-631.

    Article  CAS  Google Scholar 

  4. 4. İ. Yüksel: Environ. Dev. Sustain., 2016, vol. 19, pp. 369-384.

    Article  Google Scholar 

  5. 5. G. Wang, Y. Wang and Z. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555-560.

    Article  CAS  Google Scholar 

  6. 6. C. Kambole, P. Paige-Green, W.K. Kupolati, J.M. Ndambuki and A.O. Adeboje: Constr. Build. Mater., 2017, vol. 148, pp. 618-631.

    Article  CAS  Google Scholar 

  7. 7. S. Chatterji: Cem. Concr. Res., 1995, vol. 25, pp. 51-56.

    Article  CAS  Google Scholar 

  8. 8. L.F. Amaral, I.R. Oliveira, P. Bonadia, R. Salomão and V.C. Pandolfelli: Ceram. Int., 2011, vol. 37, pp. 1537-1542.

    Article  CAS  Google Scholar 

  9. Juckes LM (2003) Trans Inst Min Metall C 112:177-197

    Google Scholar 

  10. Japanese Industrial Standards (2018) JI Standards. Japanese Industrial Standards, Tokyo

    Google Scholar 

  11. 11. F.M. Lea: The Chemistry of Cement and Concrete. 3rd ed., Edward Arnold, Glasgow, 1970, pp. 111-112.

    Google Scholar 

  12. 12. K. Hanada, M. Inose, S. Sato, K. Watanabe and K. Fujimoto: Tetsu-to-Hagané, 2016, vol. 102, pp. 24-28.

    Article  Google Scholar 

  13. 13. M. Kato, K. Tsukagoshi, M. Aimoto, S. Saito and M. Shibukawa: ISIJ Int., 2018, vol. 58, pp. 1834-1839.

    Article  CAS  Google Scholar 

  14. 14. K. Kanehashi and M. Aimoto: Tetsu-to-Hagané, 2013, vol. 99, pp. 543-551.

    Article  CAS  Google Scholar 

  15. 15. H. Tsuneda, S. Imashuku and K. Wagatsuma: Tetsu-to-Hagané, 2019, vol. 105, pp. 30-37.

    Article  Google Scholar 

  16. 16. S. Imashuku, K. Ono, R. Shishido, S. Suzuki and K. Wagatsuma: Mater. Charact., 2017, vol. 131, pp. 210-216.

    Article  CAS  Google Scholar 

  17. 17. S. Imashuku, K. Ono and K. Wagatsuma: X-Ray Spectrom., 2017, vol. 46, pp. 131-135.

    Article  CAS  Google Scholar 

  18. 18. S. Imashuku, K. Ono and K. Wagatsuma: Microsc. Microanal., 2017, vol. 23, pp. 1143-1149.

    Article  CAS  Google Scholar 

  19. 19. S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2868-2874.

    Article  Google Scholar 

  20. S. Imashuku and K. Wagatsuma: Surf. Interface Anal., 2019, vol. 51, pp. 31-34.

    Article  CAS  Google Scholar 

  21. S. Imashuku and K. Wagatsuma: X-Ray Spectrom., 2019, vol. 48, pp. 522-526.

    Article  CAS  Google Scholar 

  22. S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B, 2019. https://doi.org/10.1007/s11663-019-01732-8.

    Article  Google Scholar 

  23. 23. S. Imashuku and K. Wagatsuma: Corros. Sci., 2019, vol. 154, pp. 226-230.

    Article  CAS  Google Scholar 

  24. 24. W.E. Lee, S. Zhang and M. Karakus: J. Mater. Sci., 2004, vol. 39, pp. 6675-6685.

    Article  CAS  Google Scholar 

  25. Musante L, Martorello LF, Galliano PG, Cavalieri AL, Tomba Martinez AG (2012) Ceram Int 38:4035-4047

    Article  CAS  Google Scholar 

  26. 26. M. Karakus, M.D. Crites and M.E. Schlesinger: J. Microsc., 2000, vol. 200, pp. 50-58.

    Article  CAS  Google Scholar 

  27. 27. A. Niida, K. Okohira, A. Tanaka and T. Kai: Tetsu-to-Hagané, 1983, vol. 69, pp. 42-50.

    Article  CAS  Google Scholar 

  28. 28. M. Gautier, J. Poirier, F. Bodénan, G. Franceschini and E. Véron: Int. J. Miner. Process., 2013, vol. 123, pp. 94-101.

    Article  CAS  Google Scholar 

  29. 29. C. Liu, M. Guo, L. Pandelaers, B. Blanpain and S. Huang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3237-3240.

    Article  Google Scholar 

  30. 30. S.-M. Liang and R. Schmid-Fetzer: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 4768-4785.

    Article  CAS  Google Scholar 

  31. 31. T. Kato, G. Okada and T. Yanagida: J. Ceram. Soc. Jpn., 2016, vol. 124, pp. 559-563.

    Article  CAS  Google Scholar 

  32. Gaft M, Reisfeld R, Panczer G (2005) Luminescence Spectroscopy of Minerals and Materials. Springer, Berlin

    Google Scholar 

  33. 33. K. Ramseyer and J. Mullis: Geologic Application of Cathodoluminescence of Silicates. Springer, Berlin, 2000, pp. 177-191.

    Google Scholar 

  34. 34. R. Dai, C. Tong, Y. Zhu, C. Xu, L. Yang and Y. Li: Opt. Mater., 2018, vol. 85, pp. 32-40.

    Article  CAS  Google Scholar 

  35. 35. Y. Sato, H. Kato, M. Kobayashi, T. Masaki, D.H. Yoon and M. Kakihana: Angew. Chem. Int. Ed. Engl., 2014, vol. 53, pp. 7756-9.

    Article  CAS  Google Scholar 

  36. 36. Z. Mao, Z. Lu, J. Chen, B.D. Fahlman and D. Wang: J. Mater. Chem. C, 2015, vol. 3, pp. 9454-9460.

    Article  CAS  Google Scholar 

  37. 37. P. Wu, G. Eriksson, A.D. Pelton and M. Blander: ISIJ Int., 1993, vol. 33, pp. 26-35.

    Article  CAS  Google Scholar 

  38. 38. P. Wu, G. Eriksson and A.D. Pelton: J. Am. Ceram. Soc., 1993, vol. 76, pp. 2065-2075.

    Article  CAS  Google Scholar 

  39. 39. A.S. Marfunin: Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer-Verlag, Berlin, 1979.

    Book  Google Scholar 

  40. 40. D. Habermann, R.D. Neuser and D.K. Richter: Quantitative High Resolution Spectral Analysis of Mn 2+in Sementary Calcite. Springer, Berlin, 2000, pp. 331-358.

    Google Scholar 

  41. 41. H. Suito, T. Yokomaku, Y. Hayashida and Y. Takahashi: Tetsu-to-Hagané, 1977, vol. 63, pp. 2316-2325.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI (Grant Number 17H03435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Imashuku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 26, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S., Tsuneda, H. & Wagatsuma, K. Rapid and Simple Identification of Free Magnesia in Steelmaking Slag Used for Road Construction Using Cathodoluminescence. Metall Mater Trans B 51, 27–34 (2020). https://doi.org/10.1007/s11663-019-01724-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01724-8

Navigation