Skip to main content
Log in

Influence of sol–gel-derived ZnO:Al coating on luminescent properties of Y2O3:Eu3+ phosphor

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study deposited transparent and conductive Al-doped ZnO (AZO) thin coating on the surface of Y2O3:Eu3+ phosphor particle via a sol–gel method and analyzed the influence of soaking pretreatment, sol concentration, stabilizers, and coating temperature on the microstructure and luminescent properties of AZO-coated Y2O3:Eu3+ phosphors with the aid of SEM, TEM, cathodoluminescence (CL), and photoluminescence (PL) measurements. A water soaking pretreatment was found to effectively improve the coverage and uniformity of the AZO coating, resulting in a continuous and coherent coating. This result is attributed to the presence of adsorbed water and hydroxyl groups on the Y2O3:Eu3+ particle surface after water soaking. Monoethanolamine as a stabilizer agent and higher sol concentration led to a thicker coating on the phosphors. At 800 V or lower, the CL intensity of AZO coated Y2O3:Eu3+ phosphors is significantly greater than that of the uncoated particles and increases with coating thickness. In addition, the PL emission intensity also rises with increasing coating thickness and is even higher than bare phosphors. Further increases in coating thickness beyond the optimum value led to a decrease in PL intensity. This study thus proposes that AZO coatings with sufficient thickness and surface coverage bring about in a higher electron/UV light transport and less surface defects, resulting in an improvement in emission intensity.

Highlights

  • The deposition of AZO thin coating on Y2O3:Eu3+ phosphor was prepared by a sol-gel method.

  • The water soaking pretreatment effectively improves the quality of the AZO coating layer.

  • The AZO coating can enhance CL intensity, but the allowable applied voltage decreases.

  • The PL intensity rises with increasing AZO coating thickness and is even higher than bare phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847

    Article  CAS  Google Scholar 

  2. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Multifunctional composite core-shell nanoparticles. Nanoscale 3:4474–4502

    Article  CAS  Google Scholar 

  3. Zhou Z, Zhou N, Lu X, Kate Mt, Valdesueiro D, Ruud van Ommen J, Hintzen HT (2016) Performance improvement by alumina coatings on Y3Al5O12:Ce3+ phosphor powder deposited using atomic layer deposition in a fluidized bed reactor. RSC Adv 6:76454–76462

    Article  CAS  Google Scholar 

  4. Yoo HS, Im WB, Kim SW, Kwon BH, Jeon DY (2010) Continuous nano-coating of Y2O3:Eu3+ phosphor shell on SiO2 core particles and its photoluminescence properties. J Lumin 130:153–156

    Article  CAS  Google Scholar 

  5. Zhang C, Uchikoshi T, Kitabatake T, Sakka Y, Hirosaki N (2013) Surface modification of Ca-α-SiAlON: Eu2+ phosphor particles by SiO2 coating and fabrication of its deposit by electrophoretic deposition (EPD) process. Appl Surf Sci 280:229–234

    Article  CAS  Google Scholar 

  6. Zhang J, An L, Wang S (2009) Preparation and upconversion luminescence of Y2O3:Yb3+, Ho3+ nanocrystalline powders coated with SiO2. J Alloy Compd 471:201–203

    Article  CAS  Google Scholar 

  7. Kim JP, Song SB (2011) Protective sol–gel coating on silicate phosphor used in light emitting diodes. Appl Surf Sci 257:2159–2163

    Article  CAS  Google Scholar 

  8. Zhu H, Yang H, Fu W, Zhu P, Li M, Li Y, Sui Y, Liu S, Zou G (2008) The improvement of thermal stability of BaMgAl10O17: Eu2+ coated with MgO. Mater Lett 62:784–786

    Article  CAS  Google Scholar 

  9. Chung C-C, Jean J-H (2006) Protective magnesia coating on Y2O2S:Eu phosphor powders. J Am Ceram Soc 89:2726–2730

    CAS  Google Scholar 

  10. Souriau J-C, Dong Jiang Y, Penczek J, Paris HG, Summers CJ (2000) Cathodoluminescent properties of coated SrGa2S4:Eu2+ and ZnS:Ag,Cl phosphors for field emission display applications. Mater Sci Eng B 76:165–168

    Article  Google Scholar 

  11. Lee HS, Yoo JW (2011) Yellow phosphors coated with TiO2 for the enhancement of photoluminescence and thermal stability. Appl Surf Sci 257:8355–8359

    Article  CAS  Google Scholar 

  12. Oh S-I, Lee H-S, Kim K-B, Kang J-G (2010) Cathodoluminescence properties of In2O3-coated Y2O3:Eu3+. Bull Korean Chem Soc 31:1389–1392

    Article  CAS  Google Scholar 

  13. Kominami H, Nakamura T, Sowa K, Nakanishi Y, Hatanaka Y, Shimaoka G (1997) Low voltage cathodoluminescent properties of phosphors coated with In2O3 by sol-gel method. Appl Surf Sci 113–114:519–522

    Article  Google Scholar 

  14. Xiaoshan H, Xiaowei H, Yunsheng H, Weidong Z (2007) Research on Y2O3:Eu phosphor coated with In2O3. J Rare Earths 25:11–14

    Article  Google Scholar 

  15. Yu I (2006) Low-voltage cathodoluminescent properties of ZnGa2O4:Mn phosphors coated with In2O3 nano-particles. Mater Res Bull 41:1403–1406

    Article  CAS  Google Scholar 

  16. Chang C-H, Chiou B-S, Chen K-S, Ho J-C (2005) Characterization and conductive coating of phosphors for improved brightness. Appl Surf Sci 243:55–61

    Article  CAS  Google Scholar 

  17. Chang C-H, Chiou B-S, Chen K-S, Ho C-C, Ho J-C (2005) The effect of In2O3 conductive coating on the luminescence and zeta potential of ZnS:Cu, Al phosphors. Ceram Int 31:635–640

    Article  CAS  Google Scholar 

  18. Shang CY, Kang H, Jiang HB, Bu SP, Shang XH, Wu Y (2013) Introduction of cooperating conductive components into the phosphor to improve the low voltage cathodoluminescence. J Lumin 138:182–186

    Article  CAS  Google Scholar 

  19. Jiang D, Cao L, Liu W, Su G, Qu H, Sun Y, Dong B (2009) Synthesis and luminescence properties of core/shell ZnS:Mn/ZnO nanoparticles. Nanoscale Res Lett 4:78–83

    Article  CAS  Google Scholar 

  20. Guo R, Shi P, Cheng X, Sun L (2009) Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material. Electrochimica Acta 54:5796–5803

    Article  CAS  Google Scholar 

  21. Singhal R, Tomar MS, Burgos JG, Katiyar RS (2008) Electrochemical performance of ZnO-coated LiMn1.5Ni0.5O4 cathode material. J Power Sources 183:334–338

    Article  CAS  Google Scholar 

  22. Choi S-W, Hong S-H, Ko K-Y, Do YR (2008) Nanoscale ZnO and Al-doped ZnO coatings on ZnS:Ag phosphors and their cathodoluminescent properties. J Am Ceram Soc 91:451–455

    Article  CAS  Google Scholar 

  23. Sun YK, Lee YS, Yoshio M, Amine K (2002) Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries. Electrochem Solid-State Lett 5:A99

    Article  CAS  Google Scholar 

  24. Yang S-H, Hsueh T-J, Chang S-J (2006) Effect of ZnO buffer layer on the cathodoluminescence of ZnGa2O4/ZnO phosphor screen for FED. J Cryst Growth 287:194–198

    Article  CAS  Google Scholar 

  25. Fang T, Duh J-G, Sheen S-R (2004) LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries. Thin Solid Films 469-470:361–365

    Article  CAS  Google Scholar 

  26. Choi H-H, Ollinger M, Singh RK (2003) Enhanced cathodoluminescent properties of ZnO encapsulated ZnS:Ag phosphors using an electrochemical deposition coating. Appl Phys Lett 82:2494

    Article  CAS  Google Scholar 

  27. Cai KF, Mueller E, Drasar C, Mrotzek A (2003) Sol–gel processing of ZnO-coated TiB2 composite powders. Mater Lett 57:4251–4255

    Article  CAS  Google Scholar 

  28. Mhlongo GH, Dhlamini MS, Swart HC, Ntwaeaborwa OM, Hillie KT (2011) Dependence of photoluminescence (PL) emission intensity on Eu3+ and ZnO concentrations in Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphors. Opt Mater 33:1495–1499

    Article  CAS  Google Scholar 

  29. Li G, Lin J (2014) Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties. Chem Soc Rev 43:7099–7131

    Article  CAS  Google Scholar 

  30. Fang H, Sun J, Geng C, Zhang L, Yan Q, Wang X, Shen D (2013) Surface modification of KBaBP2O8:Eu3+ phosphors by Al-doped ZnO coating. Mater Lett 100:216–218

    Article  CAS  Google Scholar 

  31. Rafiaei SM, Kang S (2017) Effect of nano-sized SiO2 on the optical properties of YVO4:Eu3+ phosphors. Compos Interfaces 24:319–333

    Article  CAS  Google Scholar 

  32. Znaidi L (2010) Sol–gel-deposited ZnO thin films: a review. Mater Sci Eng B 174:18–30

    Article  CAS  Google Scholar 

  33. Kuroda Y, Hamano H, Mori T, Yoshikawa Y, Nagao M (2000) Specific adsorption behavior of water on a Y2O3 surface. Langmuir 16:6937–6947

    Article  CAS  Google Scholar 

  34. Zhu Q, Li J-G, Li X, Sun X (2009) Morphology-dependent crystallization and luminescence behavior of (Y,Eu)2O3 red phosphors. Acta Mater 57:5975–5985

    Article  CAS  Google Scholar 

  35. Akkaya Arıer ÜÖ, Uysal BÖ (2014) The effects of DEA:water ratio on the properties of ZnO nanofilms obtained by spin coating method. Mater Sci Semicond Process 24:157–163

    Article  CAS  Google Scholar 

  36. Sun Y, Shimai S, Peng X, Zhou G, Kamiya H, Wang S (2014) Fabrication of transparent Y2O3 ceramics via aqueous gelcasting. Ceram Int 40:8841–8845

    Article  CAS  Google Scholar 

  37. Xiong M, Xi X, Gong H, Shui AZ (2017) Effects of SiO2 coating on luminescence property and thermostability of Sr2MgSi2O7: Eu2+, Dy3+ phosphors. J Sol–Gel Sci Technol 81:894–902

    Article  CAS  Google Scholar 

  38. Thongsuriwong K, Amornpitoksuk P, Suwanboon S (2010) The effect of aminoalcohols (MEA, DEA and TEA) on morphological control of nanocrystalline ZnO powders and its optical properties. J Phys Chem Solids 71:730–734

    Article  CAS  Google Scholar 

  39. Boudjouan F, Chelouche A, Touam T, Djouadi D, Khodja S, Tazerout M, Ouerdane Y, Hadjoub Z (2015) Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films. J Lumin 158:32–37

    Article  CAS  Google Scholar 

  40. Zhu M, Huang H, Gong J, Sun C, Jiang X (2007) Effect of sol satbilizer on the density of sol–gel derived ZnO fims. China Surf Eng 20:1–4

    Google Scholar 

  41. Kolodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide-from synthesis to application: a review. Materials 7:2833–2881

    Article  CAS  Google Scholar 

  42. Vajargah PH, Abdizadeh H, Ebrahimifard R, Golobostanfard MR (2013) Sol–gel derived ZnO thin films: effect of amino-additives. Appl Surf Sci 285:732–743

    Article  CAS  Google Scholar 

  43. Arii T, Kishi A (2003) The effect of humidity on thermal process of zinc acetate. Thermochim Acta 400:175–185

    Article  CAS  Google Scholar 

  44. Dutta M, Mridha S, Basak D (2008) Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique. Appl Surf Sci 254:2743–2747

    Article  CAS  Google Scholar 

  45. Li G, Lin J (2016) In: Phosphors, up conversion nano particles, quantum dots and their applications: Volume 2. Liu R-S (ed), Springer, Singapore. p 41–82.

  46. Abrams BL, Holloway PH (2004) Role of the surface in luminescent processes. Chem Rev 104:5783–5801

    Article  CAS  Google Scholar 

  47. Zhang M, Wang X, Ding H, Li H, Pan L, Sun Z (2011) The enhanced low-voltage cathodoluminescent properties of spherical Y2O3:Eu3+ phosphors coated with In2O3 and its application to field-emission displays. Int J Appl Ceram Technol 8:752–758

    Article  CAS  Google Scholar 

  48. Garces FA, Budini N, Arce RD, Schmidt JA (2015) Effect of thickness on structural and electrical properties of Al-doped ZnO films. Thin Solid Films 574:162–168

    Article  CAS  Google Scholar 

  49. Mridha S, Basak D (2007) Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater Res Bull 42:875–882

    Article  CAS  Google Scholar 

  50. Blasse G, Grabmaier BC (1994). Luminescent materials. 1994, Springer Berlin Heidelberg: Berlin, Heidelberg.

  51. Zak AK, Razali R, Majid WH, Darroudi M (2011) Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed 6:1399–1403

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from National Science Council, Taiwan, under contracts nos. NSC 93-2216-E-214-019 and NSC 94-2216-E-214-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyung-Dong Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JD., Chen, CC. & Lin, CF. Influence of sol–gel-derived ZnO:Al coating on luminescent properties of Y2O3:Eu3+ phosphor. J Sol-Gel Sci Technol 92, 562–574 (2019). https://doi.org/10.1007/s10971-019-05122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05122-z

Keywords

Navigation