Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic rearrangements in primary liver cancers: cause and consequences

Abstract

Primary liver cancer (PLC) is the fourth most frequent cause of cancer-related death. The high mortality rates arise from late diagnosis and the limited accuracy of diagnostic and prognostic biomarkers. The liver is a major regulator, orchestrating the clearance of toxins, balancing glucose, lipid and amino acid uptake, managing whole-body metabolism and maintaining metabolic homeostasis. Tumour onset and progression is frequently accompanied by rearrangements of metabolic pathways, leading to dysregulation of metabolism. The limitation of current therapies targeting PLCs, such as hepatocellular carcinoma and cholangiocarcinoma, points towards the importance of deciphering this metabolic complexity. In this Review, we discuss the role of metabolic liver disruptions and the implications of these processes in PLCs, emphasizing their clinical relevance and value in early diagnosis and prognosis and as putative therapeutic targets. We also describe system biology approaches able to reconstruct the metabolic complexity of liver diseases. We also discuss whether metabolic rearrangements are a cause or consequence of PLCs, emphasizing the opportunity to clinically exploit the rewired metabolism. In line with this idea, we discuss circulating metabolites as promising biomarkers for PLCs.

Key points

  • The heterogeneous mutational landscape of primary liver cancers (PLCs) is associated with unique metabolic dysregulations.

  • Substantial metabolic rearrangements are present in chronic liver diseases and contribute to the development of PLCs.

  • Genome-wide metabolic models are useful tools to tackle the complexity of PLC metabolism.

  • Metabolomics in different biological fluids (liquid biopsy samples) have excellent translational potential for the diagnosis of liver diseases and PLCs.

  • Targeting metabolic rearrangements in chronic liver diseases and PLCs offers unexploited preventative and therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dysregulated pathways in PLC.
Fig. 2: Pathways branching from glycolysis.
Fig. 3: Intersecting glycolysis and PPP and nucleotide synthesis.
Fig. 4: Connection between TCA and urea cycles, amino acids and de novo lipogenesis.
Fig. 5: Schematic overview of the genome scale metabolic model development.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  2. Petrick, J. L. et al. Body mass index, diabetes and intrahepatic cholangiocarcinoma risk: the Liver Cancer Pooling Project and meta-analysis. Am. J. Gastroenterol. 113, 1494–1505 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wongjarupong, N. et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol. 17, 149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim, G. A. et al. Association between non-alcoholic fatty liver disease and cancer incidence rate. J. Hepatol. 68, 140–146 (2018).

    Article  Google Scholar 

  5. Banales, J. M. et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 13, 261–280 (2016).

    Article  PubMed  Google Scholar 

  6. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eann2507 (2017).

    Article  CAS  Google Scholar 

  9. Peng, X. et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep. 23, 255–269.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341.E23 (2017).

    Article  CAS  Google Scholar 

  11. Du, X. et al. Upregulation of miR-181a impairs hepatic glucose and lipid homeostasis. Oncotarget 8, 91362–91378 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Nwosu, Z. C. et al. Identification of the consistently altered metabolic targets in human hepatocellular carcinoma. Cell Mol. Gastroenterol. Hepatol. 4, 303–323.e1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fitian, A. I. et al. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int. 34, 1428–1444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, R. et al. Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma. Sci. Rep. 5, 18175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang, Q. et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma. Mol. Biosyst. 12, 334–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Budhu, A. et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 144, 1066–1075.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Murakami, Y. et al. Comprehensive analysis of transcriptome and metabolome analysis in intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Sci. Rep. 5, 16294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaisaingmongkol, J. et al. Common molecular subtypes among Asian hepatocellular carcinoma and cholangiocarcinoma. Cancer Cell 32, 57–70 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, Q. et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 73, 4992–5002 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Nepal, C. et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology 68, 949–963 (2017).

    Article  CAS  Google Scholar 

  21. Farshidfar, F. et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 19, 2878–2880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, P. et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 32, 3091–3100 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura, H. et al. Genomic spectra of biliary tract cancer. Nat. Genet. 47, 1003–1010 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Jusakul, A. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  27. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol. 202, 654–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Amann, T. et al. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am. J. Pathol. 174, 1544–1552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, H. W. et al. GLUT1 and ASCT2 as predictors for prognosis of hepatocellular carcinoma. PLOS ONE 11, e0168907 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Paudyal, B. et al. Clinical implication of glucose transport and metabolism evaluated by 18F-FDG PET in hepatocellular carcinoma. Int. J. Oncol. 33, 1047–1054 (2008).

    CAS  PubMed  Google Scholar 

  32. Kim, Y. H. et al. SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma. Oncotarget 8, 68381–68392 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Osthus, R. C. et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kubo, Y. et al. Different expression of glucose transporters in the progression of intrahepatic cholangiocarcinoma. Hum. Pathol. 45, 1610–1617 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, S. H. et al. Usefulness of F-18 FDG PET/CT in the evaluation of early treatment response after interventional therapy for hepatocellular carcinoma. Nucl. Med. Mol. Imaging 46, 102–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robey, R. B. & Hay, N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683–4696 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen, P. L., Mathupala, S., Rempel, A., Geschwind, J. F. & Ko, Y. H. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta 1555, 14–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. DeWaal, D. et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun. 9, 446 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Guzman, G. et al. Evidence for heightened hexokinase II immunoexpression in hepatocyte dysplasia and hepatocellular carcinoma. Dig. Dis. Sci. 60, 420–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell Biol. 27, 7381–7393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thamrongwaranggoon, U. et al. Targeting hexokinase II as a possible therapy for cholangiocarcinoma. Biochem. Biophys. Res. Commun. 484, 409–415 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Noguchi, T., Yamada, K., Inoue, H., Matsuda, T. & Tanaka, T. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J. Biol. Chem. 262, 14366–14371 (1987).

    CAS  PubMed  Google Scholar 

  43. Yamada, K. & Noguchi, T. Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem. J. 337, 1–11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noguchi, T., Inoue, H. & Tanaka, T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem. 261, 13807–13812 (1986).

    CAS  PubMed  Google Scholar 

  45. Wong, C. C. et al. Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis. PLOS ONE 9, e115036 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mendez-Lucas, A. et al. Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities. Cancer Res. 77, 4355–4364 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Clower, C. V. et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl Acad. Sci. USA 107, 1894–1899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mazurek, S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Gao, X., Wang, H., Yang, J. J., Liu, X. & Liu, Z. R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, G. et al. PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma. Mol. Cancer 14, 193 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu, Y. et al. Clinicopathological and prognostic significance of PKM2 protein expression in cirrhotic hepatocellular carcinoma and non-cirrhotic hepatocellular carcinoma. Sci. Rep. 7, 15294 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chen, Z. et al. Co-expression of PKM2 and TRIM35 predicts survival and recurrence in hepatocellular carcinoma. Oncotarget 6, 2538–2548 (2015).

    PubMed  Google Scholar 

  53. Dayton, T. L. et al. Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1020–1033 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhar, D. K. et al. Pyruvate kinase M2 is a novel diagnostic marker and predicts tumor progression in human biliary tract cancer. Cancer 119, 575–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, W. et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 158, 1210 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Z. X. et al. Preoperative serum liver enzyme markers for predicting early recurrence after curative resection of hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 14, 178–185 (2015).

    Article  PubMed  Google Scholar 

  57. Faloppi, L. et al. The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: implications for clinical management. BMC Cancer 14, 110 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Faloppi, L. et al. The correlation between LDH serum levels and clinical outcome in advanced biliary tract cancer patients treated with first line chemotherapy. Sci. Rep. 6, 24136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rutter, J., Winge, D. R. & Schiffman, J. D. Succinate dehydrogenase – assembly, regulation and role in human disease. Mitochondrion 10, 393–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. King, A., Selak, M. A. & Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Tseng, P. L. et al. Decreased succinate dehydrogenase B in human hepatocellular carcinoma accelerates tumor malignancy by inducing the Warburg effect. Sci. Rep. 8, 3081 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Amary, M. F. et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol. 224, 334–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep. 13, 345 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cancer Genome Atlas Research Network. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

    Article  CAS  Google Scholar 

  66. Borger, D. R. et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17, 72–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Delahousse, J. et al. Circulating oncometabolite D-2-hydroxyglutarate enantiomer is a surrogate marker of isocitrate dehydrogenase-mutated intrahepatic cholangiocarcinomas. Eur. J. Cancer 90, 83–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Borger, D. R. et al. Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma. Clin. Cancer Res. 20, 1884–1890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tateishi, K. et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28, 773–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fu, X. et al. 2-Hydroxyglutarate inhibits ATP synthase and mTOR signaling. Cell Metab. 22, 508–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goyal, L. et al. Prognosis and clinicopathologic features of patients with advanced stage isocitrate dehydrogenase (IDH) mutant and IDH wild-type intrahepatic cholangiocarcinoma. Oncologist 20, 1019–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, A. X. et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets. Ann. Surg. Oncol. 21, 3827–3834 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hardiville, S. & Hart, G. W. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 20, 208–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ruan, H. B., Singh, J. P., Li, M. D., Wu, J. & Yang, X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol. Metab. 24, 301–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phoomak, C. et al. High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci. Rep. 7, 43842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Qiao, Y. et al. High glucose stimulates tumorigenesis in hepatocellular carcinoma cells through AGER-dependent O-GlcNAcylation of c-Jun. Diabetes 65, 619–632 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Lin, S. H. et al. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions. Sci. Rep. 6, 21184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, L. et al. High expression of GFAT1 predicts unfavorable prognosis in patients with hepatocellular carcinoma. Oncotarget 8, 19205–19217 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Zhu, Q. et al. O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med. Oncol. 29, 985–993 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Phoomak, C. et al. Overexpression of O-GlcNAc-transferase associates with aggressiveness of mass-forming cholangiocarcinoma. Asian Pac. J. Cancer Prev. 13, 101105 (2012).

    Google Scholar 

  86. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Sun, C. et al. O-GlcNAcylation: a bridge between glucose and cell differentiation. J. Cell Mol. Med. 20, 769–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, W. H. et al. NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc. Natl Acad. Sci. USA 105, 17345–17350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rao, X. et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat. Commun. 6, 8468 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Duan, F. et al. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J. Hepatol. 68, 1191–1202 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, W. et al. O-GlcNAcylation on Rab3A attenuates its effects on mitochondrial oxidative phosphorylation and metastasis in hepatocellular carcinoma. Cell Death Dis. 9, 970 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Xu, W. et al. O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress. J. Hepatol. 67, 310–320 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Phoomak, C. et al. Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-kappaB. Sci. Rep. 6, 27853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Phoomak, C. et al. O-GlcNAcylation mediates metastasis of cholangiocarcinoma through FOXO3 and MAN1A1. Oncogene 37, 5648–5665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Trapannone, R., Rafie, K. & van Aalten, D. M. O-GlcNAc transferase inhibitors: current tools and future challenges. Biochem. Soc. Trans. 44, 88–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Ricciardiello, F. et al. Inhibition of the hexosamine biosynthetic pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death Dis. 9, 377 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Asthana, A., Ramakrishnan, P., Vicioso, Y., Zhang, K. & Parameswaran, R. Hexosamine biosynthetic pathway inhibition leads to aml cell differentiation and cell death. Mol. Cancer Ther. 17, 2226–2237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Resendis-Antonio, O. & Diener, C. Editorial: Systems biology and the challenge of deciphering the metabolic mechanisms underlying cancer. Front. Physiol. 8, 537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu, H. et al. Changes in glucose-6-phosphate dehydrogenase expression results in altered behavior of HBV-associated liver cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G611–G622 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Yin, X. et al. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. J. Exp. Clin. Cancer Res. 36, 166 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lu, M. et al. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim. Biophys. Sin. 50, 370–380 (2018).

    Article  CAS  Google Scholar 

  104. Kowalik, M. A. et al. Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget 7, 32375–32393 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Liu, B. et al. Hepatitis B virus stimulates G6PD expression through HBx-mediated Nrf2 activation. Cell Death Dis. 6, e1980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barajas, J. M. et al. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer. Sci. Rep. 8, 9105 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Singh, A. et al. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J. Clin. Invest. 123, 2921–2934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ngo, H. K. C., Kim, D. H., Cha, Y. N., Na, H. K. & Surh, Y. J. Nrf2 mutagenic activation drives hepatocarcinogenesis. Cancer Res. 77, 4797–4808 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Guan, L. et al. FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1-Nrf2 signaling. Hepatology 63, 1914–1927 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Wu, T., Leng, J., Han, C. & Demetris, A. J. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol. Cancer Ther. 3, 299–307 (2004).

    CAS  PubMed  Google Scholar 

  112. Matter, M. S., Decaens, T., Andersen, J. B. & Thorgeirsson, S. S. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J. Hepatol. 60, 855–865 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Samatiwat, P., Prawan, A., Senggunprai, L., Kukongviriyapan, U. & Kukongviriyapan, V. Nrf2 inhibition sensitizes cholangiocarcinoma cells to cytotoxic and antiproliferative activities of chemotherapeutic agents. Tumour. Biol. 37, 11495–11507 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Xu, I. M. et al. Transketolase counteracts oxidative stress to drive cancer development. Proc. Natl Acad. Sci. USA 113, E725–E734 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Saito, T. et al. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat. Commun. 7, 12030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Panieri, E. & Saso, L. Potential applications of nrf2 inhibitors in cancer therapy. Oxid. Med. Cell Longev. 2019, 8592348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nissim, I., Yudkoff, M. & Brosnan, J. T. Regulation of [15N]urea synthesis from [5-15N]glutamine. Role of pH, hormones, and pyruvate. J. Biol. Chem. 271, 31234–31242 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, H., Dong, H., Robertson, K. & Liu, C. DNA methylation suppresses expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) in human hepatocellular carcinoma. Am. J. Pathol. 178, 652–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yeh, H. W., Lee, S. S., Chang, C. Y., Hu, C. M. & Jou, Y. S. Pyrimidine metabolic rate limiting enzymes in poorly-differentiated hepatocellular carcinoma are signature genes of cancer stemness and associated with poor prognosis. Oncotarget 8, 77734–77751 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Li, H. et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci. Rep. 5, 8421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu, C. Y. et al. Association of nucleos(t)ide analogue therapy with reduced risk of hepatocellular carcinoma in patients with chronic hepatitis B: a nationwide cohort study. Gastroenterology 147, 143–151.e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Choi, J. et al. Risk of hepatocellular carcinoma in patients treated with entecavir vs tenofovir for chronic hepatitis B: a Korean nationwide cohort study. JAMA Oncol. 5, 30–36 (2019).

    Article  PubMed  Google Scholar 

  123. Idilman, R. et al. Low recurrence rate of hepatocellular carcinoma following ledipasvir and sofosbuvir treatment in a real-world chronic hepatitis C patients cohort. J. Viral Hepat. 26, 666–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Willson, K. J., Nott, L. M., Broadbridge, V. T. & Price, T. Hepatic encephalopathy associated with cancer or anticancer therapy. Gastrointest. Cancer Res. 6, 11–16 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Chaerkady, R. et al. A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J. Proteome Res. 7, 4289–4298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, T. et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol. Cell Proteom. 10, M110.004945 (2011).

    Article  CAS  Google Scholar 

  127. McAlpine, J. A., Lu, H. T., Wu, K. C., Knowles, S. K. & Thomson, J. A. Down-regulation of argininosuccinate synthetase is associated with cisplatin resistance in hepatocellular carcinoma cell lines: implications for PEGylated arginine deiminase combination therapy. BMC Cancer 14, 621 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kim, R. H. et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 69, 700–708 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yoon, C. Y. et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int. J. Cancer 120, 897–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Bowles, T. L. et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int. J. Cancer 123, 1950–1955 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nagamani, S. C. & Erez, A. A metabolic link between the urea cycle and cancer cell proliferation. Mol. Cell. Oncol. 3, e1127314 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Roeksomtawin, S. et al. Decreased argininosuccinate synthetase expression in Thai patients with cholangiocarcinoma and the effects of ADI-PEG20 treatment in CCA cell lines. Oncol. Lett. 16, 1529–1538 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Feun, L. & Savaraj, N. Pegylated arginine deiminase: a novel anticancer enzyme agent. Expert Opin. Investig. Drugs 15, 815–822 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S. & Clark, M. A. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62, 5443–5450 (2002).

    CAS  PubMed  Google Scholar 

  135. Lam, T. L. et al. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. Cancer Lett. 277, 91–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Abou-Alfa, G. K. et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann. Oncol. 29, 1402–1408 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Tsai, W. B. et al. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4. Mol. Cancer Ther. 8, 3223–3233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, B. et al. Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. Br. J. Cancer 109, 14–23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pieters, R. et al. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer 117, 238–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Ollenschlager, G. et al. Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drug-related side-effects. Eur. J. Clin. Invest. 18, 512–516 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Tardito, S. et al. L-Asparaginase and inhibitors of glutamine synthetase disclose glutamine addiction of beta-catenin-mutated human hepatocellular carcinoma cells. Curr. Cancer Drug Targets 11, 929–943 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Hirayama, C., Suyama, K., Horie, Y., Tanimoto, K. & Kato, S. Plasma amino acid patterns in hepatocellular carcinoma. Biochem. Med. Metab. Biol. 38, 127–133 (1987).

    Article  CAS  PubMed  Google Scholar 

  143. Janpipatkul, K. et al. Downregulation of LAT1 expression suppresses cholangiocarcinoma cell invasion and migration. Cell Signal 26, 1668–1679 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Di Tommaso, L. et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 45, 725–734 (2007).

    Article  PubMed  CAS  Google Scholar 

  145. Adebayo Michael, A. O. et al. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. Cell Metab. 29, 1135–1150 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wise, D. R. & Thompson, C. B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Soukupova, J. et al. Role of the transforming growth factor-beta in regulating hepatocellular carcinoma oxidative metabolism. Sci. Rep. 7, 12486 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Zaidi, N. et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 52, 585–589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Calvisi, D. F. et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140, 1071–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Li, L. et al. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. J. Hepatol. 64, 333–341 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Lally, J. S. V. et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174–182.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Li, L. et al. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology 63, 1900–1913 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Evert, M., Schneider-Stock, R. & Dombrowski, F. Overexpression of fatty acid synthase in chemically and hormonally induced hepatocarcinogenesis of the rat. Lab. Invest. 85, 99–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Nelson, M. E. et al. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat. Commun. 8, 14689 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ma, H. et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).

    Article  PubMed  CAS  Google Scholar 

  163. Hyotylainen, T. et al. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease. Nat. Commun. 7, 8994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pagliarini, R. et al. In silico modeling of liver metabolism in a human disease reveals a key enzyme for histidine and histamine homeostasis. Cell Rep. 15, 2292–2300 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bjornson, E. et al. Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 13, 2014–2026 (2015).

    Article  PubMed  CAS  Google Scholar 

  166. Benfeitas, R. et al. Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis. EBioMedicine 40, 471–487 (2019).

    Article  PubMed  Google Scholar 

  167. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Bidkhori, G. et al. Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma. Front. Physiol. 9, 916 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Hur, W. et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Sci. Rep. 7, 45557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gingold, J. A., Zhu, D., Lee, D. F., Kaseb, A. & Chen, J. Genomic profiling and metabolic homeostasis in primary liver cancers. Trends Mol. Med. 24, 395–411 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  172. Dai, C. et al. Metabolomics of oncogene-specific metabolic reprogramming during breast cancer. Cancer Metab. 6, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sun, L. et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 25, 429–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, C. et al. Metformin delays AKT/c-Met-driven hepatocarcinogenesis by regulating signaling pathways for de novo lipogenesis and ATP generation. Toxicol. Appl. Pharmacol. 365, 51–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huang, Q. et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J. Hepatol. 61, 859–866 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Ikeno, Y. et al. Preoperative metabolic tumor volume of intrahepatic cholangiocarcinoma measured by (18)F-FDG-PET is associated with the KRAS mutation status and prognosis. J. Transl. Med. 16, 95 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wardell, C. P. et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 68, 959–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Kerr, E. M., Gaude, E., Turrell, F. K., Frezza, C. & Martins, C. P. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531, 110–113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Levrero, M. & Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 64, S84–S101 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Sung, W. K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Kim, K. H. et al. Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma. Gastroenterology 132, 1955–1967 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Yang, F. et al. Expression of hepatitis B virus proteins in transgenic mice alters lipid metabolism and induces oxidative stress in the liver. J. Hepatol. 48, 12–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Schoeman, J. C. et al. Metabolic characterization of the natural progression of chronic hepatitis B. Genome Med. 8, 64 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Tong, A. et al. Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics 8, 2012–2023 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Levy, G. et al. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat. Chem. Biol. 12, 1037–1045 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, J. et al. Role of HDAC9-FoxO1 axis in the transcriptional program associated with hepatic gluconeogenesis. Sci. Rep. 7, 6102 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Li, Q. et al. Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat. Commun. 8, 1789 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Clugston, R. D. et al. CD36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis. J. Lipid Res. 55, 239–246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Vecchione, G. et al. Ethanol and fatty acids impair lipid homeostasis in an in vitro model of hepatic steatosis. Food Chem. Toxicol. 90, 84–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. French, S. W. Chronic alcohol binging injures the liver and other organs by reducing NAD(+) levels required for sirtuin's deacetylase activity. Exp. Mol. Pathol. 100, 303–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Georgiadi, A. & Kersten, S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. 3, 127–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Barres, R. et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 10, 189–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Silva-Martinez, G. A. et al. Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics 11, 321–334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wu, D. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Brown, Z. J., Heinrich, B. & Greten, T. F. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat. Rev. Gastroenterol. Hepatol. 15, 536–554 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Nakagawa, H. Recent advances in mouse models of obesity- and nonalcoholic steatohepatitis-associated hepatocarcinogenesis. World J. Hepatol. 7, 2110–2118 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Dowman, J. K. et al. Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle. Am. J. Pathol. 184, 1550–1561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hill-Baskin, A. E. et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum. Mol. Genet. 18, 2975–2988 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Liu, N. et al. Hepatocarcinogenesis in FXR-/- mice mimics human HCC progression that operates through HNF1alpha regulation of FXR expression. Mol. Endocrinol. 26, 775–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fan, C. Y. et al. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J. Biol. Chem. 273, 15639–15645 (1998).

    Article  CAS  PubMed  Google Scholar 

  203. Martinez-Chantar, M. L. et al. Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J. 16, 1292–1294 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Fujiwara, N., Friedman, S. L., Goossens, N. & Hoshida, Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J. Hepatol. 68, 526–549 (2018).

    Article  PubMed  Google Scholar 

  205. Chen, H. P. et al. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut 62, 606–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Kang, W. H. et al. Metformin-associated chemopreventive effects on recurrence after hepatic resection of hepatocellular carcinoma: from in vitro to a clinical study. Anticancer Res. 38, 2399–2407 (2018).

    CAS  PubMed  Google Scholar 

  207. Liu, Y., Hu, X., Shan, X., Chen, K. & Tang, H. Rosiglitazone metformin adduct inhibits hepatocellular carcinoma proliferation via activation of AMPK/p21 pathway. Cancer Cell Int. 19, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Kim, G., Jang, S. Y., Nam, C. M. & Kang, E. S. Statin use and the risk of hepatocellular carcinoma in patients at high risk: a nationwide nested case-control study. J. Hepatol. 68, 476–484 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Cho, Y., Kim, M. S., Nam, C. M. & Kang, E. S. Statin use is associated with decreased hepatocellular carcinoma recurrence in liver transplant patients. Sci. Rep. 9, 1467 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Kawaguchi, Y. et al. Statin use is associated with a reduced risk of hepatocellular carcinoma recurrence after initial liver resection. Biosci. Trends 11, 574–580 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Wang, B. et al. Metabonomic profiles discriminate hepatocellular carcinoma from liver cirrhosis by ultraperformance liquid chromatography-mass spectrometry. J. Proteome Res. 11, 1217–1227 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Grammatikos, G. et al. Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma. Oncotarget 7, 18095–18105 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Ressom, H. W. et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal. Chim. Acta 743, 90–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Soga, T. et al. Serum metabolomics reveals gamma-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J. Hepatol. 55, 896–905 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Wei, S. et al. Differentiating hepatocellular carcinoma from hepatitis C using metabolite profiling. Metabolites 2, 701–716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhou, L. et al. Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases. Anal. Bioanal. Chem. 403, 203–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Wu, T. et al. Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients. Sci. Rep. 7, 42710 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Saito, T. et al. Serum metabolome profiles characterized by patients with hepatocellular carcinoma associated with hepatitis B and C. World J. Gastroenterol. 22, 6224–6234 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Gong, Z. G. et al. Metabolomics and eicosanoid analysis identified serum biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus-related cirrhosis. Oncotarget 8, 63890–63900 (2017).

    PubMed  PubMed Central  Google Scholar 

  220. Wu, H. et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal. Chim. Acta 648, 98–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Zhang, A. et al. Urinary metabolic profiling identifies a key role for glycocholic acid in human liver cancer by ultra-performance liquid-chromatography coupled with high-definition mass spectrometry. Clin. Chim. Acta 418, 86–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Dai, W. et al. Study of urinary steroid hormone disorders: difference between hepatocellular carcinoma in early stage and cirrhosis. Anal. Bioanal. Chem. 406, 4325–4335 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Osman, D., Ali, O., Obada, M., El-Mezayen, H. & El-Said, H. Chromatographic determination of some biomarkers of liver cirrhosis and hepatocellular carcinoma in Egyptian patients. Biomed. Chromatogr. 31, e3893 (2017).

  224. Shao, Y. et al. Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery. J. Proteome Res. 14, 906–916 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Cox, I. J. et al. Urinary nuclear magnetic resonance spectroscopy of a Bangladeshi cohort with hepatitis-B hepatocellular carcinoma: a biomarker corroboration study. World J. Gastroenterol. 22, 4191–4200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lee, J. H. et al. Individualized metabolic profiling stratifies pancreatic and biliary tract cancer: a useful tool for innovative screening programs and predictive strategies in healthcare. EPMA J. 9, 287–297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Banales, J. M. et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma and primary sclerosing cholangitis. Hepatology 70, 547–562 (2018).

    Article  CAS  Google Scholar 

  228. Kim, K. H. et al. Reduced levels of N'-methyl-2-pyridone-5-carboxamide and lysophosphatidylcholine 16:0 in the serum of patients with intrahepatic cholangiocarcinoma, and the correlation with recurrence-free survival. Oncotarget 8, 112598–112609 (2017).

    PubMed  PubMed Central  Google Scholar 

  229. Park, J. Y. et al. Bile acid analysis in biliary tract cancer. Yonsei Med. J. 47, 817–825 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Nagana Gowda, G. A., Shanaiah, N., Cooper, A., Maluccio, M. & Raftery, D. Bile acids conjugation in human bile is not random: new insights from (1)H-NMR spectroscopy at 800 MHz. Lipids 44, 527–535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sharif, A. W. et al. Metabolic profiling of bile in cholangiocarcinoma using in vitro magnetic resonance spectroscopy. HPB 12, 396–402 (2010).

    Article  Google Scholar 

  232. Albiin, N. et al. Detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis. Acta Radiol. 49, 855–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  233. Nagana Gowda, G. A., Shanaiah, N., Cooper, A., Maluccio, M. & Raftery, D. Visualization of bile homeostasis using (1)H-NMR spectroscopy as a route for assessing liver cancer. Lipids 44, 27–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  234. Mayo, R. et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatol. Commun. 2, 807–820 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Barr, J. et al. Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. J. Proteome Res. 9, 4501–4512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Alonso, C. et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 152, 1449–1461 (2017).

    Article  PubMed  Google Scholar 

  237. Romero, P. et al. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 6, R2 (2005).

    Article  PubMed  Google Scholar 

  238. Chiu, M. et al. Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. Br. J. Cancer 111, 1159–1167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Liang, Q., Liu, H., Wang, C. & Li, B. Phenotypic characterization analysis of human hepatocarcinoma by urine metabolomics approach. Sci. Rep. 6, 19763 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory of J.B.A. is supported by the Novo Nordisk Foundation (14040), Danish Cancer Society (R167-A10784) and the Danish Medical Research Council (4183–00118A). The work of J.M.B. is supported by funds from the Spanish Carlos III Health Institute (ISCIII; FIS PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129) co-financed by: “Fondo Europeo de Desarrollo Regional” (FEDER); “Instituto de Salud Carlos III” (CIBERehd), Spain; BIOEF (Basque Foundation for Innovation and Health Research; EiTB Maratoia BIO15/CA/016/BD); La Caixa Scientific Foundation (HR17-00601); and “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation).

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks Amedeo Columbano, Carmen Wong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Author information

Authors and Affiliations

Authors

Contributions

J.B.A., L.S. and M.L. researched data for the article, made a substantial contribution to discussions of content, and wrote and reviewed/edited the manuscript before submission. P.M.R. and J.M.B. wrote and reviewed/edited the manuscript before submission. L.S. and M.L. contributed equally.

Corresponding author

Correspondence to Jesper B. Andersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satriano, L., Lewinska, M., Rodrigues, P.M. et al. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol 16, 748–766 (2019). https://doi.org/10.1038/s41575-019-0217-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0217-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer