Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Strategies to break linear scaling relationships

Abstract

The search for new catalytic materials has relied on highly time- and human- resource-consuming procedures. The appearance of theoretical methods that employ density functional theory coupled to kinetic models has allowed the rational understanding of activity volcano plots and selectivity abrupt profiles that resemble cliffs. However, these methodologies present several drawbacks as the optimization is confined to a family of materials, typically metals, and not applied to the overall phase and compositional space, therefore the maximum activity might not be sufficient for practical applications. Volcanos emerge from the symmetry between the adsorption energies of different intermediates on the catalyst, and thus circumventing these dependencies is crucial to identify better catalytic materials. Here we present a revision of the advances in the field that indicate that complexity in the materials is key to identifying alternative paths and thus overcome the drawbacks of scaling relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Competitive reaction network to convert A and B into P and Q as desired and undesired products, respectively.
Fig. 2: The cone timeline of breaking linear-scaling relationships strategies.

Similar content being viewed by others

Code Availability

The model systems for Fig. 1 can be retrieved from ref. 19.

References

  1. P. Sabatier. La Catalyse en Chimie Organique (Librarie Polytechnique, Paris, 1913).

  2. Balandin, A. Modern State of the Multiplet Theory of Heterogeneous Catalysis 1. Adv. Catal. Rel. Subj. 19, 1 (1969).

    CAS  Google Scholar 

  3. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    PubMed  Google Scholar 

  4. Nørskov, J. K., Studt, F., Abild-Pedersen, F., Bligaard, T. Fundamental concepts in heterogeneous catalysis (Wiley, 2014).

  5. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    PubMed  Google Scholar 

  6. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Google Scholar 

  7. Ardagh, M. A., Abdelrahman, O. A. & Dauenhauer, P. J. Principles of dynamic heterogeneous catalysis: surface resonance and turnover frequency response. ACS Catal. 9, 6929–6937 (2019).

    CAS  Google Scholar 

  8. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem 1, 552–556 (2009).

    CAS  Google Scholar 

  9. Vilè, G. et al. Silver nanoparticles for olefin production: new insights into the mechanistic description of propyne hydrogenation. ChemCatChem 5, 3750–3759 (2013).

    Google Scholar 

  10. Choksi, T., Majumdar, P. & Greeley, J. P. Electrostatic origins of linear scaling relationships at bifunctional metal/oxide interfaces: a case study of Au nanoparticles on doped MgO substrates. Angew. Chem. Int. Ed. 57, 15410–15414 (2018).

    CAS  Google Scholar 

  11. Koper, M. T. M. Volcano activity relationships for proton-coupled electron transfer reactions in electrocatalysis. Top. Catal. 58, 18–20 (2015).

    Google Scholar 

  12. Busch, M., Wodrich, M. D. & Corminboeuf, C. Linear scaling relationships and volcano plots in homogeneous catalysis–revisiting the Suzuki reaction. Chem. Sci. 6, 6754–6761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Busch, M. et al. Beyond the top of the volcano?–A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016).

    CAS  Google Scholar 

  14. Halck, N. B., Petrykin, V., Krtil, P. & Rossmeisl, J. Beyond the volcano limitations in electrocatalysis–oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682–13688 (2014).

    CAS  PubMed  Google Scholar 

  15. Li, Y. & Sun, Q. Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Ener. Mat. 6, 1600463 (2016).

    Google Scholar 

  16. Szécsényi, Á. et al. Breaking linear scaling relationships with secondary interactions in confined space: a case study of methane oxidation by Fe/ZSM-5 zeolite. ACS Catal. 9, 9276–9284 (2019).

    Google Scholar 

  17. Cao, A. et al. Mechanistic insights into the synthesis of higher alcohols from syngas on CuCo alloys. ACS Catal. 8, 10148–10155 (2018).

    CAS  Google Scholar 

  18. Kanady, J. S. et al. Synthesis of Pt3Y and other early–late intermetallic nanoparticles by way of a molten reducing agent. J. Am. Chem. Soc. 139, 5672–5675 (2017).

    CAS  PubMed  Google Scholar 

  19. García-Muelas, R. Minimalistic microkinetic model with volcanoes and cliffs. Zenodo https://doi.org/10.5281/zenodo.3338280 (2019).

    Article  Google Scholar 

  20. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  PubMed  Google Scholar 

  21. Calle-Vallejo, F. et al. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    CAS  PubMed  Google Scholar 

  22. Bligaard, T. et al. The Bronsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    CAS  Google Scholar 

  23. Medford, A. J. et al. Activity and selectivity trends in synthesis gas conversion to higher alcohols. Top. Catal. 57, 135–142 (2014).

    CAS  Google Scholar 

  24. Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl. Sci. Rev. 2, 140–149 (2015).

    CAS  Google Scholar 

  25. Wang, H. et al. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 5, eaat6413 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).

    Google Scholar 

  27. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2015).

    Google Scholar 

  28. Lindlar, H. Ein neuer Katalysator für selektive Hydrierungen. Helv. Chim. Acta 35, 446 (1952).

    CAS  Google Scholar 

  29. Vilè, G. et al. From the Lindlar catalyst to supported ligand modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous flow three phase hydrogenation of acetylenic compounds. Chem. Eur. J. 20, 5926–5937 (2014).

    PubMed  Google Scholar 

  30. Vilè, G. et al. A stable single site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

    Google Scholar 

  31. Darby, M. T., Stamatakis, M., Michaelides, A. & Sykes, E. C. H. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 9, 5636–5646 (2018).

    CAS  PubMed  Google Scholar 

  32. McKenna, F.-M. & Anderson, J. A. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts. J. Catal. 281, 231–240 (2011).

    CAS  Google Scholar 

  33. Albani, D. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Comm. 9, 2634 (2018).

    Google Scholar 

  34. Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mat. 8, 213–216 (2009).

    CAS  Google Scholar 

  35. Voroyeva, E. et al. Atom-by-atom resolution of structure–function relations over low‐nuclearity metal catalysts. Angew. Chem. Int. Ed. 58, 8724 (2019).

    Google Scholar 

  36. Frei, M. S. et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nat. Comm. 10, 3377 (2019).

    Google Scholar 

  37. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    CAS  PubMed  Google Scholar 

  38. Sun, D. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Comm. 9, 4454 (2018).

    Google Scholar 

  39. Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    CAS  Google Scholar 

  40. Studt, F. Volcano relation for the Deacon process over transition metal oxides. ChemCatChem 2, 98–102 (2010).

    CAS  Google Scholar 

  41. Moser, M. et al. The virtue of defects: stable bromine production by catalytic oxidation of hydrogen bromide on titanium oxide. Angew. Chem. Int. Ed. 53, 8628–8633 (2014).

    CAS  Google Scholar 

  42. Lari, G. M. et al. Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: the key role of the ligand. Angew. Chem. Int. Ed. 129, 1801–1805 (2014).

    Google Scholar 

  43. Ortuño, M. A. Selective electrochemical nitrogen reduction driven by hydrogen bond interactions at metal–ionic liquid interfaces. J. Phys. Chem. Lett. 10, 513–517 (2019).

    PubMed  Google Scholar 

  44. Horiuti, I. & Polanyi, M. Exchange reactions of hydrogen on metallic catalysts. J. Chem. Soc. Faraday Trans. 30, 1164–1172 (1934).

    Google Scholar 

  45. Fiorio, J. L., López, N. & Rossi, L. M. Gold–ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 heterolytic activation by frustrated lewis pairs. ACS Catal. 7, 2973–2980 (2017).

    CAS  Google Scholar 

  46. Almora-Barrios, N., Cano, I., van Leeuwen, P. W. N. M. & López, N. Concerted chemoselective hydrogenation of acrolein on secondary phosphine oxide decorated gold nanoparticles. ACS Catal. 7, 3949–3954 (2017).

    CAS  Google Scholar 

  47. García-Melchor, M. & López, N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: the example of CeO2. J. Phys. Chem. C. 118, 10921–10926 (2014).

    Google Scholar 

  48. Albani, D. et al. Interfacial acidity in ligand-modified ruthenium nanoparticles boosts the hydrogenation of levulinic acid to gamma-valerolactone. Green. Chem. 19, 2361–2370 (2017).

    CAS  Google Scholar 

  49. Wang, Y.-H. et al. Brønsted acid scaling relationships enable control over product selectivity from O2 reduction with a mononuclear cobalt porphyrin catalyst. ACS Cent. Sci. 5, 1024–1034 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Almora-Barrios, N. et al. Electrochemical effects at surfactant–platinum nanoparticle interfaces boost catalytic performance. ChemCatChem 9, 604–609 (2017).

    CAS  Google Scholar 

  51. Zhang, W. et al. Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles. ACS Energy Lett. 3, 2308–2313 (2018).

    CAS  Google Scholar 

  52. Tuokko, S., Pihko, P. M. & Honkala, K. First principles calculations for hydrogenation of acrolein on Pd and Pt: chemoselectivity depends on steric effects on the surface. Angew. Chem. Int. Ed. 128, 1702–1706 (2016).

    Google Scholar 

  53. García-Muelas, R. et al. Origin of the selective electroreduction of carbon dioxide to formate by chalcogen modified copper. J. Phys. Chem. Lett. 9, 7153–7159 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Zhan, S., De Gracia Triviño, J. A. & Ahlquist, M. S. G. The carboxylate ligand as an oxide relay in catalytic water oxidation. J. Am. Chem. Soc. 141, 10247–10252 (2019).

    CAS  PubMed  Google Scholar 

  55. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    CAS  PubMed  Google Scholar 

  56. Zandkarimi, B. & Alexandrova, A. N. Dynamics of subnanometer Pt clusters can break the scaling relationships in catalysis. J. Phys. Chem. Lett. 10, 460–467 (2019).

    PubMed  Google Scholar 

  57. Ortuño, M. A. & Lopez, N. Creating cavities at palladium–phosphine interfaces for enhanced selectivity in heterogeneous biomass conversion. ACS Catal. 8, 6138–6145 (2018).

    Google Scholar 

  58. Kauppinen, M. M., Korpelin, V., Verma, A. H., Melander, M. M., Honkala, K. Escaping scaling relationships for water dissociation at interfacial sites of zirconia-supported Rh and Pt clusters. Preprint at https://doi.org/10.26434/chemrxiv.9761477.v1 (2019).

  59. Gani, T. Z. H. & Kulik, H. J. Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by FeIV═O. ACS Catal. 8, 975–986 (2018).

    CAS  Google Scholar 

  60. Daelman, N., Capdevila-Cortada, M., López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mat. https://doi.org/10.1038/s41563-019-0444-y (2019).

    CAS  PubMed  Google Scholar 

  61. Robertson, J. C., Coote, M. L. & Bissember, A. C. Synthetic applications of light, electricity, mechanical force and flow. Nat. Rev. Chem. 3, 290–304 (2019).

    Google Scholar 

  62. James, S. L. et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).

    CAS  PubMed  Google Scholar 

  63. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mat. 10, 911–321 (2011).

    CAS  Google Scholar 

  64. Garcés-Pineda, F. et al. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019).

    Google Scholar 

Download references

Acknowledgements

We would like to thank E. Fako and R. García-Muelas for their assistance with Figs., microkinetic modelling and for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier Pérez-Ramírez or Núria López.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Ramírez, J., López, N. Strategies to break linear scaling relationships. Nat Catal 2, 971–976 (2019). https://doi.org/10.1038/s41929-019-0376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0376-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing