Skip to main content
Log in

Endogenous nucleotide as drug carrier: base-paired guanosine-5′-monophosphate:pemetrexed vesicles with enhanced anticancer capability

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Endogenous substance such as nucleotide as a drug carrier has been proposed as a novel drug delivery system. The nucleotide guanosine-5′-monophosphate (GMP) is used to transport an anticancer drug pemetrexed disodium heptahydrate (PMX) via specific base pairing. The endogenous nature of GMP helps to avoid biocompatibility issues that are generally accompanied with nanocarriers including cytotoxicity, immunogenicity and blood compatibility. Furthermore, the low-molecular weight of the GMP nucleotide carrier significantly boosts the drug loading capacity compared to traditional liposomes and high-molecular weight carriers. Hydrogen-bonding interaction between the carrier and drug realizes the controlled release of loaded drug, and also facilitates large scale manufacture since no additional chemical synthesis is required. More importantly, in vivo experiments reveal that the base-paired GMP:PMX nanovesicles improve the target specificity and pharmacokinetic properties of PMX, and exhibit remarkably enhanced anticancer abilities compared to standalone PMX without any carriers. We envision that this strategy could be extended to other endogenous substances and drugs bearing functional groups capable of specific interaction, and promote the construction of drug delivery systems with inherent biocompatibility, enhanced drug delivery efficacy, and a simplified preparation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Proc Natl Acad Sci USA, 2002, 99: 12617–12621

    CAS  PubMed  Google Scholar 

  2. Barenholz YC. J Control Release, 2012, 160: 117–134

    CAS  PubMed  Google Scholar 

  3. Li M, Luo Z, Zhao Y. Sci China Chem, 2018, 61: 1214–1226

    CAS  Google Scholar 

  4. Mura S, Nicolas J, Couvreur P. Nat Mater, 2013, 12: 991–1003

    CAS  PubMed  Google Scholar 

  5. Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Sci China Chem, 2018, 61: 1503–1552

    CAS  Google Scholar 

  6. Allen TM, Cullis PR. Science, 2004, 303: 1818–1822

    CAS  PubMed  Google Scholar 

  7. Brigger I, Dubernet C, Couvreur P. Adv Drug Deliver Rev, 2002, 54: 631–651

    CAS  Google Scholar 

  8. Farokhzad OC, Langer R. ACS Nano, 2009, 3: 16–20

    CAS  PubMed  Google Scholar 

  9. Ganta S, Devalapally H, Shahiwala A, Amiji M. J Control Release, 2008, 126: 187–204

    CAS  PubMed  Google Scholar 

  10. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nat Nanotech, 2007, 2: 751–760

    CAS  Google Scholar 

  11. Wang D, Tu C, Su Y, Zhang C, Greiser U, Zhu X, Yan D, Wang W. Chem Sci, 2015, 6: 3775–3787

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Allen TM, Cullis PR. Adv Drug Deliver Rev, 2013, 65: 36–48

    CAS  Google Scholar 

  13. Pattni BS, Chupin VV, Torchilin VP. Chem Rev, 2015, 115: 10938–10966

    CAS  PubMed  Google Scholar 

  14. Cao Z, Tong R, Mishra A, Xu W, Wong GCL, Cheng J, Lu Y. Angew Chem Int Ed, 2009, 48: 6494–6498

    CAS  Google Scholar 

  15. Liu Z, Robinson JT, Sun X, Dai H. J Am Chem Soc, 2008, 130: 10876–10877

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Chem Soc Rev, 2013, 42: 1147–1235

    CAS  PubMed  Google Scholar 

  17. Elsabahy M, Wooley KL. Chem Soc Rev, 2012, 41: 2545–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng X, Ding J, Gref R, Chen X. Chin J Polym Sci, 2017, 35: 693–699

    CAS  Google Scholar 

  19. Huang Y, Qin J, Wang J, Yan G, Wang X, Tang R. Sci China Chem, 2018, 61: 1447–1459

    CAS  Google Scholar 

  20. Zhou D, Cutlar L, Gao Y, Wang W, O’Keeffe-Ahern J, McMahon S, Duarte B, Larcher F, Rodriguez BJ, Greiser U, Wang W. Sci Adv, 2016, 2: e1600102

    PubMed  PubMed Central  Google Scholar 

  21. Zhou D, Gao Y, AS, Xu Q, Meng Z, Greiser U, Wang W. ACS Macro Lett, 2016, 5: 1266–1272

    CAS  Google Scholar 

  22. Li Z, Yu L, Yang T, Chen Y. Sci China Chem, 2018, 61: 1243–1260

    CAS  Google Scholar 

  23. Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W. Adv Drug Deliver Rev, 2011, 63: 1361–1370

    CAS  Google Scholar 

  24. Rampersaud S, Fang J, Wei Z, Fabijanic K, Silver S, Jaikaran T, Ruiz Y, Houssou M, Yin Z, Zheng S, Hashimoto A, Hoshino A, Lyden D, Mahajan S, Matsui H. Nano Lett, 2016, 16: 7357–7363

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Qiu L, Xie S, Zhang J, Zhang L, Liu H, Li J, Zhang X, Tan W. Sci China Chem, 2018, 61: 497–504

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu G, Zhao X, Zhou J, Mao Z, Huang X, Wang Z, Hua B, Liu Y, Zhang F, He Z, Jacobson O, Gao C, Wang W, Yu C, Zhu X, Huang F, Chen X. J Am Chem Soc, 2018, 140: 8005–8019

    CAS  PubMed  Google Scholar 

  27. Sun Q, Radosz M, Shen Y. J Control Release, 2012, 164: 156–169

    CAS  PubMed  Google Scholar 

  28. de Jong WH, Borm PJA. Int J Nanomed, 2008, 3: 133–149

    CAS  Google Scholar 

  29. Nel A, Xia T, Mädler L, Li N. Science, 2006, 311: 622–627

    CAS  PubMed  Google Scholar 

  30. Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M. Chem Soc Rev, 2012, 41: 2323–2343

    CAS  PubMed  Google Scholar 

  31. Xu L, Yang J, Xue B, Zhang C, Shi L, Wu C, Su Y, Jin X, Liu Y, Zhu X. Biomaterials, 2017, 147: 1–13

    CAS  PubMed  Google Scholar 

  32. Jain K, Mehra NK, Jain NK. CPD, 2015, 21: 4252–4261

    CAS  Google Scholar 

  33. Kratz F, Müller-Driver R, Hofmann I, Drevs J, Unger C. J Med Chem, 2000, 43: 1253–1256

    CAS  PubMed  Google Scholar 

  34. Han YC, Huang X, Wang YL. Chin Sci Bull, 2016, 61: 3127–3136

    Google Scholar 

  35. Bath J, Turberfield AJ. Nat Nanotech, 2007, 2: 275–284

    CAS  Google Scholar 

  36. Keefe AD, Pai S, Ellington A. Nat Rev Drug Discov, 2010, 9: 537–550

    CAS  PubMed  Google Scholar 

  37. Wu Z, Tang LJ, Zhang XB, Jiang JH, Tan W. ACS Nano, 2011, 5: 7696–7699

    CAS  PubMed  Google Scholar 

  38. Prins LJ, Reinhoudt DN, Timmerman P. Angew Chem Int Ed, 2001, 40: 2382–2426

    CAS  Google Scholar 

  39. Huang P, Wang D, Su Y, Huang W, Zhou Y, Cui D, Zhu X, Yan D. J Am Chem Soc, 2014, 136: 11748–11756

    CAS  PubMed  Google Scholar 

  40. Ando H, Kobayashi S, Abu Lila AS, Eldin NE, Kato C, Shimizu T, Ukawa M, Kawazoe K, Ishida T. J Control Release, 2015, 220: 29–36

    CAS  PubMed  Google Scholar 

  41. Chen Y, Pang Y, Wu J, Su Y, Liu J, Wang R, Zhu B, Yao Y, Yan D, Zhu X, Chen Q. Langmuir, 2010, 26: 9011–9016

    CAS  PubMed  Google Scholar 

  42. Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D. J Am Chem Soc, 2013, 135: 4765–4770

    CAS  PubMed  Google Scholar 

  43. Reul R, Nguyen J, Kissel T. Biomaterials, 2009, 30: 5815–5824

    CAS  PubMed  Google Scholar 

  44. Wang D, Lin J, Jia F, Tan X, Wang Y, Sun X, Cao X, Che F, Lu H, Gao X, Shimkonis JC, Nyoni Z, Lu X, Zhang K. Sci Adv, 2019, 5: eaav9322

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Solomon B, Bunn Jr PA. Future Oncology, 2005, 1: 733–746

    CAS  PubMed  Google Scholar 

  46. Hwang KE, Kim YS, Hwang YR, Kwon SJ, Park DS, Cha BK, Kim BR, Yoon KH, Jeong ET, Kim HR. Oncology Rep, 2015, 33: 2411–2419

    CAS  Google Scholar 

  47. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Adv Mater, 2011, 23: H18–H40

    CAS  PubMed  Google Scholar 

  48. Wang D, Yu C, Xu L, Shi L, Tong G, Wu J, Liu H, Yan D, Zhu X. J Am Chem Soc, 2018, 140: 8797–8806

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Municipal Government (18JC1410800) and the National Natural Science Foundation of China (51690151, 21774077). We would like to thank Prof. Yongfeng Zhou for helpful discussion on the structure of nanoparticles, Jieli Wu and Bona Dai for the help on NMRs, Jiaojian Yuan for the help on LC-MS, and Jiwen Qian for the help on animal experiments. We would also like to thank Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd. for generous donation of pemetrexed disodium heptahydrate and useful information on cell screening.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dali Wang or Xinyuan Zhu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Online Material

11426_2019_9614_MOESM1_ESM.docx

Endogenous nucleotide as drug carrier: base-paired guanosine-5’-monophosphate:pemetrexed vesicles with enhanced anticancer capability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yu, C., Wang, D. et al. Endogenous nucleotide as drug carrier: base-paired guanosine-5′-monophosphate:pemetrexed vesicles with enhanced anticancer capability. Sci. China Chem. 63, 244–253 (2020). https://doi.org/10.1007/s11426-019-9614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9614-2

Keywords

Navigation