Skip to main content
Log in

A β-sheet-targeted theranostic agent for diagnosing and preventing aggregation of pathogenic peptides in Alzheimer’s disease

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Amyloid-β peptide (Aβ) aggregates, particularly Aβ oligomers, are established biomarker and toxic species in Alzheimer’s disease (AD). Early detection and disaggregation of Aβ aggregates are of great importance for the treatment of AD due to the unavailability of therapy at the advanced stages of the disease. A multitalented agent, 2-{2-[(1H-benzoimidazol-2-yl)methoxy] phenyl}benzothiazole (BPB), is designed by merging two β-sheet targeting groups into one molecule to detect and inhibit the Aβ aggregation. BPB can quantitatively measure the β-sheet level of soluble Aβ oligomers and specifically distinguish the aggregates of Aβ40 and Aβ42 by unique luminescence spectrum. Animal tests demonstrate that BPB can efficiently penetrate the blood brain barrier and precisely stain Aβ plaques in the brain; more importantly, it can differentiate the blood of APP transgenic mice from that of normal ones. In addition to the diagnostic potential, BPB also suppresses the generation of ROS, protects the neurons from neurotoxicity, and disaggregates the Aβ aggregates in brain homogenates of APP transgenic mice induced by metal ions or self-assembly. In view of its detective ability toward Aβ oligomers and inhibition to Aβ-related neurotoxicity, BPB may be developed into a sensitive probe for screening blood samples in the early diagnosis of AD as well as an effective inhibitor for diminishing Aβ aggregates in the treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kepp KP. Chem Rev, 2012, 112: 5193–5239

    CAS  PubMed  Google Scholar 

  2. Vinters HV. Annu Rev Pathol Mech Dis, 2015, 10: 291–319

    CAS  Google Scholar 

  3. Gao N, Sun H, Dong K, Ren J, Duan T, Xu C, Qu X. Nat Commun, 2014, 5: 3422–3431

    PubMed  Google Scholar 

  4. Faller P, Hureau C, La Penna G. Acc Chem Res, 2014, 47: 2252–2259

    CAS  PubMed  Google Scholar 

  5. Selkoe DJ. Science, 2012, 337: 1488–1492

    CAS  PubMed  Google Scholar 

  6. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC. N Engl J Med, 2012, 367: 795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tentolouris-Piperas V, Ryan NS, Thomas DL, Kinnunen KM. Brain Res, 2017, 1655: 23–32

    CAS  PubMed  Google Scholar 

  8. Selkoe DJ. Nat Med, 2011, 17: 1060–1065

    CAS  PubMed  Google Scholar 

  9. Zhu L, Ploessl K, Kung HF. Chem Soc Rev, 2014, 43: 6683–6691

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson KA, Fox NC, Sperling RA, Klunk WE. Cold Spring Harb Perspect Med, 2012, 2: a006213

    PubMed  PubMed Central  Google Scholar 

  11. Selkoe DJ, Hardy J. EMBO Mol Med, 2016, 8: 595–608

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo JL, Lee VMY. Nat Med, 2014, 20: 130–138

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ratnayaka JA, Serpell LC, Lotery AJ. Eye, 2015, 29: 1013–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark LF, Kodadek T. Alzheimer’s Res Ther, 2013, 5: 18–25

    Google Scholar 

  15. Wood H. Nat Rev Neurol, 2016, 12: 678

    CAS  PubMed  Google Scholar 

  16. Telpoukhovskaia MA, Orvig C. Chem Soc Rev, 2013, 42: 1836–1846

    CAS  PubMed  Google Scholar 

  17. Chen T, Wang X, He Y, Zhang C, Wu Z, Liao K, Wang J, Guo Z. Inorg Chem, 2009, 48: 5801–5809

    CAS  PubMed  Google Scholar 

  18. Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC. J Biol Chem, 2005, 280: 41057–41068

    CAS  PubMed  Google Scholar 

  19. Cheng S, Hou J, Zhang C, Xu C, Wang L, Zou X, Yu H, Shi Y, Yin Z, Chen G. Sci Rep, 2015, 5: 10535–10549

    PubMed  PubMed Central  Google Scholar 

  20. Wang X, Wang X, Zhang C, Jiao Y, Guo Z. Chem Sci, 2012, 3: 1304–1312

    CAS  Google Scholar 

  21. Yang T, Wang X, Zhang C, Ma X, Wang K, Wang Y, Luo J, Yang L, Yao C, Wang X. Chem Commun, 2016, 52: 2245–2248

    CAS  Google Scholar 

  22. Trott O, Olson AJ. J Comput Chem, 2010, 31: 455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  23. van de Waterbeemd H, Gifford E. Nat Rev Drug Discov, 2003, 2: 192–204

    CAS  PubMed  Google Scholar 

  24. Clark DE, Pickett SD. Drug Discov Today, 2000, 5: 49–58

    CAS  PubMed  Google Scholar 

  25. Rodriguez-Rodriguez C, Sanchez de Groot N, Rimola A, Alvarez-Larena A, Lloveras V, Vidal-Gancedo J, Ventura S, Vendrell J, Sodupe M, Gonzalez-Duarte P. J Am Chem Soc, 2009, 131: 1436–1451

    CAS  PubMed  Google Scholar 

  26. Savelieff MG, DeToma AS, Derrick JS, Lim MH. Acc Chem Res, 2014, 47: 2475–2482

    CAS  PubMed  Google Scholar 

  27. Zhang X, Tian Y, Li Z, Tian X, Sun H, Liu H, Moore A, Ran C. J Am Chem Soc, 2013, 135: 16397–16409

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao N, Qu XG. Sci Sin Chim, 2018, 48: 941–955

    Google Scholar 

  29. Economou NJ, Giammona MJ, Do TD, Zheng X, Teplow DB, Buratto SK, Bowers MT. J Am Chem Soc, 2016, 138: 1772–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bibl M, Esselmann H, Mollenhauer B, Weniger G, Welge V, Liess M, Lewczuk P, Otto M, Schulz JB, Trenkwalder C, Kornhuber J, Wiltfang J. J Neurochem, 2007, 103: 467–474

    CAS  PubMed  Google Scholar 

  31. Urraca JL, Aureliano CSA, Schillinger E, Esselmann H, Wiltfang J, Sellergren B. J Am Chem Soc, 2011, 133: 9220–9223

    CAS  PubMed  Google Scholar 

  32. Wang J, Wang Y, Hu X, Zhu C, Ma Q, Liang L, Li Z, Yuan Q. Anal Chem, 2019, 91: 823–829

    CAS  PubMed  Google Scholar 

  33. Chen Y, Liu L. Adv Drug Deliver Rev, 2012, 64: 640–665

    CAS  Google Scholar 

  34. Haass C, Selkoe DJ. Nat Rev Mol Cell Biol, 2007, 8: 101–112

    CAS  PubMed  Google Scholar 

  35. Hickey JL, Lim SC, Hayne DJ, Paterson BM, White JM, Villemagne VL, Roselt P, Binns D, Cullinane C, Jeffery CM, Price RI, Barnham KJ, Donnelly PS. J Am Chem Soc, 2013, 135: 16120–16132

    CAS  PubMed  Google Scholar 

  36. Kochi A, Eckroat TJ, Green KD, Mayhoub AS, Lim MH, Garneau-Tsodikova S. Chem Sci, 2013, 4: 4137–4145

    CAS  Google Scholar 

  37. Ma X, Hua J, Wang K, Zhang H, Zhang C, He Y, Guo Z, Wang X. Inorg Chem, 2018, 57: 13533–13543

    CAS  PubMed  Google Scholar 

  38. Barnham KJ, Bush AI. Chem Soc Rev, 2014, 43: 6727–6749

    CAS  PubMed  Google Scholar 

  39. Atrián-Blasco E, Del Barrio M, Faller P, Hureau C. Anal Chem, 2018, 90: 5909–5915

    PubMed  PubMed Central  Google Scholar 

  40. Yang L, Sun J, Xie W, Liu Y, Liu J. J Mater Chem B, 2017, 5: 5954–5967

    CAS  Google Scholar 

  41. Chen Q, Yang L, Zheng C, Zheng W, Zhang J, Zhou Y, Liu J. Nanoscale, 2014, 6: 6886–6897

    CAS  PubMed  Google Scholar 

  42. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B. Science, 2016, 352: 712–716

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanzi RE. Nat Neurosci, 2005, 8: 977–979

    CAS  PubMed  Google Scholar 

  44. Fu AKY, Hung KW, Yuen MYF, Zhou X, Mak DSY, Chan ICW, Cheung TH, Zhang B, Fu WY, Liew FY, Ip NY. Proc Natl Acad Sci USA, 2016, 113: E2705–E2713

    CAS  PubMed  Google Scholar 

  45. Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD, Yu JT. Cell Death Dis, 2014, 5: e1382

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu G, Yin S, Liu Y, Shuai Z, Zhu D. J Am Chem Soc, 2003, 125: 14816–14824

    CAS  PubMed  Google Scholar 

  47. Li M, Howson SE, Dong K, Gao N, Ren J, Scott P, Qu X. J Am Chem Soc, 2014, 136: 11655–11663

    CAS  PubMed  Google Scholar 

  48. Ono K, Condron MM, Teplow DB. Proc Natl Acad Sci USA, 2009, 106: 14745–14750

    CAS  PubMed  Google Scholar 

  49. Zhao DS, Chen YX, Liu Q, Zhao YF, Li YM. Sci Sin Chim, 2012, 42: 226–228

    Google Scholar 

  50. Lv G, Sun A, Wei P, Zhang N, Lan H, Yi T. Chem Commun, 2016, 52: 8865–8868

    CAS  Google Scholar 

  51. Chan HN, Xu D, Ho SL, Wong MS, Li HW. Chem Sci, 2017, 8: 4012–4018

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yin Z, Wang S, Shen B, Deng C, Tu Q, Jin Y, Shen L, Jiao B, Xiang J. Anal Chem, 2019, 91: 3539–3545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21877059, 31570809, 21731004), the National Basic Research Program of China (2015CB856300), the Natural Science Foundation of Jiangsu Province (BK20150054), and the Research Foundation of the Chinese State Key Laboratory of Coordination Chemistry (SKLCC1912).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiquan Chen, Zijian Guo or Xiaoyong Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary Information

11426_2019_9594_MOESM1_ESM.pdf

A β-Sheet-targeted Theranostic Agent for Diagnosing and Preventing Aggregation of Pathogenic Peptides in Alzheimer’s Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, Y., Hua, J. et al. A β-sheet-targeted theranostic agent for diagnosing and preventing aggregation of pathogenic peptides in Alzheimer’s disease. Sci. China Chem. 63, 73–82 (2020). https://doi.org/10.1007/s11426-019-9594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9594-y

Keywords

Navigation