Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T15:51:19.070Z Has data issue: false hasContentIssue false

Eighteen years of steel–bentonite interaction in the FEBEX in situ test at the Grimsel Test Site in Switzerland

Published online by Cambridge University Press:  01 January 2024

Jebril Hadi*
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, 3012, Bern, Switzerland
Paul Wersin
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, 3012, Bern, Switzerland
Vincent Serneels
Affiliation:
Département de Géoscience, Université de Fribourg, chemin du Musée 4, 1700, Fribourg, Switzerland
Jean-Marc Greneche
Affiliation:
Institut des Molécules et des Matériaux du Mans (IMMM), UMR CNRS 6283, Université du Maine, 3 avenue Olivier Messiaen, 72085, Le Mans, France
*
*E-mail address of corresponding author: jebril.hadi@geo.unibe.ch

Abstract

Corrosion of steel canisters containing buried high-level radioactive waste is a relevant issue for the long-term integrity of repositories. The purpose of the present study was to evaluate this issue by examining two differently corroded blocks originating from a full-scale in situ test of the FEBEX bentonite site in Switzerland. The FEBEX experiment was designed initially as a feasibility test of an engineered clay barrier system and was recently dismantled after 18 years of activity. Samples were studied by ‘spatially resolved’ and ‘bulk’ experimental methods, including Scanning Electron Microscopy, Elemental Energy Dispersive Spectroscopy (SEM-EDX), μ-Raman spectroscopy, X-ray Fluorescence (XRF), X-ray Diffraction (XRD), and 57Fe Mössbauer spectrometry, with a focus on Fe-bearing phases. In one of the blocks, corrosion of the steel liner led to diffusion of Fe into the bentonite, resulting in the formation of large (width > 140 mm) red, orange, and blue colored halos. Goethite was identified as the main corrosion product in the red and orange zones while no excess Fe2+ (compared to the unaffected bentonite) was observed there. Excess Fe2+ was found to have diffused further into the clay (in the blue zones) but its speciation could not be unambiguously clarified. The results indicate the occurrence of newly formed octahedral Fe2+ either as Fe2+ sorbed on the clay or as structural Fe2+ inside the clay (following electron transfer from sorbed Fe2+). No other indications of clay transformation or newly formed clay phases were found. The overall pattern indicates that diffusion of Fe was initiated when oxidizing conditions were still prevailing inside the bentonite block, resulting in the accumulation of Fe3+ close to the interface (up to three times the original Fe content), and continued when reducing conditions were reached, allowing deeper diffusion of Fe2+ into the clay (inducing an increase of 10–12% of the Fe content).

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, F. (1980) A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environmental Technology Letters, 1, 518527.CrossRefGoogle Scholar
ANDRA (2005) ANDRA research on the geological disposal of high-level long-lived radioactive waste. Report Series, Dossier 2005, ANDRA, Paris, France, 40 pp. https://www.andra.fr/download/andra-international-en/document/editions/265.pdfGoogle Scholar
Ayari, F., Srasra, E., and Trabelsi-Ayadi, M. (2007) Effect of exchangeable cations on the physicochemical properties of smectite. Surface Engineering and Applied Electrochemistry, 43, 369378.CrossRefGoogle Scholar
Bradbury, M., Berner, U., Curti, E., Hummel, W., Kosakowski, G., and Thoenen, T. (2014) The long term geochemical evolution of the nearfield of the HLW repository. Nagra Technical Reports, TR 12-01, Nagra, Villingen, Switzerland, 174 pp. https://www.nagra.ch/data/documents/database/dokumente/$default/Default%20Folder/Publikationen/NTBs%202001-2010/e_ntb12-01.pdfGoogle Scholar
Carlson, L., Karnland, O., Oversby, V.M., Rance, A.P., Smart, N.R., Snellman, M., Vahanen, M., and Werme, L.O. (2007) Experimental studies of the interactions between anaerobically corroding iron and bentonite. Physics and Chemistry of the Earth, 32, 334345.CrossRefGoogle Scholar
Eng, A.N.U. and Svensson, D. (2007) Äspö Hard Rock Laboratory - Alternative Buffer Material - Installation report. International Progress Report, IPR-07-15, SKB, Stockholm, Sweden, 67 pp. http://skb.se/upload/publications/pdf/ipr-07-15.pdfGoogle Scholar
Fernandez, A.M., Baeyens, B., Bradbury, M., and Rivas, P. (2004) Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier. Physics and Chemistry of the Earth, 29, 105118.CrossRefGoogle Scholar
Fuentes-Cantillana, J.L. and García-Siñeriz, J.L. (1998) FEBEX Full-scale engineered barriers experiment in crystalline host rock. Final design and installation of the Bin situ test at Grimsel. ENRESA Publicación Técnica, 12/98, ENRESA, Madrid, Spain, 182 pp. www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/022/30022753.pdfGoogle Scholar
Fuentes-Cantillana, J.L., García-Siñeriz, J.L., Obis, J., Pérez, A., Alberdi, J., Barcala, J.M., Campos, R., Cuevas, J., Fernández, A.M., Gamero, E., García, M., Gómez, P., Hernández, A., Illera, A., Martín, P.L., Melón, A.M., Mingarro, M., Ortuno, F., Pardillo, J., Pelayo, M., Rivas, P., Rodríguez, V., Turrero, M.J., Villar, M.V., Caballero, E., Jiménez de Cisneros, C., Linares, J., Martínez, M.A., Samper, J., Delgado, J., Juncosa, R., Molinero, J., Alonso, E., Carrera, J., Gens, A., García-Molina, A.J., Guimera, J., Guimaraes, L.d.N., Lloret, A., Martínez, L., Elorza, F.J., Borregón, J.L., Fariña, P., and Farias, J. (1998) FEBEX Full-scale engineered barriers experiment in crystalline host rock. pre-operational stage summary report. ENRESA Publicación Técnica, 1/98, ENRESA, Madrid, Spain, 390 pp.Google Scholar
Fuentes-Cantillana, J.L., García-Siñeriz, J.L., Franco, J.J., Obis, J., Pérez, A., Jullien, F., Alberdi, J., Barcala, J.M., Campos, R., Cuevas, J., Fernández, A.M., Gamero, E., García, M., Gómez, P., Hernández, A., Illera, A., Martín, P.L., Melón, A.M., Missana, T., Ortuno, F., Pardillo, J., Rivas, P., Turrero, M.J., Villar, M.V., Mingarro, M., Pelayo, M., Caballero, E., Cuadros, J., Huertas, F., Huertas, F.J., Jiménez de Cisneros, C., Linares, J., Bazargan-Sabet, B., Ghoreychi, M., Jockwer, N., Wieczorek, K., Kickmaier, W., Marschall, P., Martínez, M.A., Carretero, P., Dai, Z., Delgado, J., Juncosa, R., Molinero, J., Ruiz, A., Samper, J., Vázquez, A., Alonso, E., Carrera, J., Gens, A., García-Molina, A.J., Guimera, J., Guimaraes, L.d.N., Lloret, A., Martínez, L., Olivella, S., Pintado, X., Sánchez, M., Elorza, F.J., Borregón, J.L., Canamon, I., Rodriguez Pons-Esparver, R., Fariña, P., Farias, J., and Huertas, F. (2000) FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock. Final report ENRESA Publicación Técnica, 1/2000, ENRESA, Madrid, Spain, 367 pp. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/033/31033797.pdfGoogle Scholar
Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. Pp. 126168 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (Kloprogge, J.T., editor), 13, The Clay Minerals Society, Aurora, Colorado, USA.Google Scholar
Gaudin, A., Gaboreau, S., Tinseau, E., Bartier, D., Petit, S., Grauby, O., Foct, F., and Beaufort, D. (2009) Mineralogical reactions in the Tournemire argillite after in-situ interaction with steels. Applied Clay Science, 43, 196207.CrossRefGoogle Scholar
Gehin, A., Greneche, J.M., Tournassat, C., Brendle, J., Rancourt, D.G., and Charlet, L. (2007) Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral. Geochimica et Cosmochimica Acta, 71, 863876.CrossRefGoogle Scholar
Grim, R.E. and Kulbicki, G. (1961) Montmorillonite: high temperature reactions and classification. American Mineralogist, 46, 13291369.Google Scholar
Gütlich, P., Bill, E., and Trautwein, A.X. (2011) Mössbauer Spectroscopy and Transition Metal Chemistry. Springer-Verlag, Berlin Heidelberg, Germany.CrossRefGoogle Scholar
Hadi, J., Wersin, P., Jenni, A., and Greneche, J.M. (2017) Redox evolution and Fe-bentonite interaction in the ABM2 experiment, Äspö Hard Rock Laboratory. Nagra Technischer Bericht, NAB 17-10, Nagra, Wettingen, Switzerland, 304 pp. https://www.nagra.ch/data/documents/database/dokumente/$default/Default%20Folder/Publikationen/NTBs%202014%20-%202015/e_ntb17-10.pdfGoogle Scholar
Handler, R.M., Frierdich, A.J., Johnson, C.M., Rosso, K.M., Beard, B.L., Wang, C., Latta, D.E., Neumann, A., Pasakarnis, T., and Premaratne, W.A.P.J. (2014) Fe(II)-Catalyzed recrystallization of goethite revisited. Environmental Science & Technology, 48, 1130211311.CrossRefGoogle ScholarPubMed
Huertas, F., Farinia, P., Farias, J., Garcia-Sineriz, J.L., Villar, M.V., Fernandez, A.M., Martin, P.L., Elorza, F.J., Gens, A., Sanchez, M., Lloret, A., Samper, J., and Martinez, M.A. (2006) Full-scale engineered barriers experiment. Updated final report 1994–2004. ENRESA Publicación Técnica, 05–0/2006, ENRESA, Madrid, Spain, 590 pp.Google Scholar
Karnland, O., Olsson, S., Dueck, A., Birgersson, M., Nilsson, U., and Hernan-Hakansson, T. (2009) Long term test of buffer material at the Äspö Hard Rock Laboratory, LOT project. Final report on the A2 test parcel. SKB Technical Report, TR-09-29, SKB, Stockholm, Sweden, 279 pp. http://www.skb.se/upload/publications/pdf/TR-09-29.pdfGoogle Scholar
Kaufhold, S., Hassel, A.W., Sanders, D., and Dohrmann, R. (2015) Corrosion of high-level radioactive waste iron-canisters in contact with bentonite. Journal of Hazardous Materials, 285, 464473.CrossRefGoogle ScholarPubMed
Kerisit, S., Zarzycki, P., and Rosso, K.M. (2015) Computational Molecular Simulation of the Oxidative Adsorption of Ferrous Iron at the Hematite (001)–Water Interface. The Journal of Physical Chemistry C, 119, 92429252.CrossRefGoogle Scholar
Kober, F., Giroud, N., Uyama, M., Hitomi, T., Hayagane, S., Kadota, N., Saito, H., Okamoto, S., Aoshima, K., Osawa, M., Hadi, J., Grenèche, J.M., Wersin, P., Svensson, D., Lundgren, C., Kaufhold, S., Dohrmann, R., Ufer, K., Torres, E., Turrero, M.J., Sánchez, L., Garralón, A., Gómez, P., Campos, R., Leal Olloqui, M., Scott, T.B., and Madina, V. (2017) FEBEX-DP. Metal Corrosion and Iron-Bentonite Interaction Studies. Nagra Arbeitsbericht, NAB 16–16, Nagra, Wettingen, Switzerland, 300 pp. http://www.grimsel.com/febex-dp-generalfiles/351-nab-16-016-metal-corrosion-and-iron-bentonite-interaction-studies-1Google Scholar
Kober, F., Giroud, N., Uyama, M., Hitomi, T., Hayagane, S., Kadota, N., Saito, H., Okamoto, S., Aoshima, K., Osawa, M., Hadi, J., Grenèche, J.M., Wersin, P., Svensson, D., Lundgren, C., Kaufhold, S., Dohrmann, R., Ufer, K., Torres, E., Turrero, M.J., Sánchez, L., Garralón, A., Gómez, P., Campos, R., Leal Olloqui, M., Scott, T.B., and Madina, V. (2017) FEBEX-DP. Metal Corrosion and Iron-Bentonite Interaction Studies. Nagra Arbeitsbericht, NAB 16–16, Nagra, Wettingen, Switzerland, 300 pp. http://www.grimsel.com/febex-dp-general-files/351-nab-16-016-metal-corrosion-and-iron-bentonite-interaction-studies-1Google Scholar
Komadel, P., Madejová, J., and Stucki, J.W. (2006) Structural Fe(III) reduction in smectites. Applied Clay Science, 34, 8894.CrossRefGoogle Scholar
Lábár, J.L. and Török, S. (1992) A peak-to-background method for electron probe X-ray micro-analysis applied to individual small particles. X-Ray Spectrometry, 21, 183190.CrossRefGoogle Scholar
Lafuente, B., Drowns, R.T., Yang, H., and Stone, N. (2015) The power of databases: the RRUFF project. Pp. 130 in: Highlights in Mineralogical Chrystallography (Armbruster, T. and Danisi, R.M., editors). De Gruyter, Berlin, Germany.Google Scholar
Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M., and Plançon, A. (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays and Clay Minerals, 53, 597612.CrossRefGoogle Scholar
Lanyon, G.W. and Gaus, I. (2017) Main outcomes and review of the FEBEX In Situ Test (GTS) and Mock-up after 15 years of operation. Nagra Technischer Bericht, NTB 15–04, Nagra, Wettingen, Switzerland, 127 pp. https://www.nagra.ch/data/documents/database/dokumente/$default/Default%20FolderPublikationen/NTBs%202014%20-%202015/e_ntb15-04.pdfGoogle Scholar
Latta, D.E., Neumann, A., Premaratne, W.A.P.J., and Scherer, M.M. (2017) Fe(II)–Fe(III) Electron Transfer in a Clay Mineral with Low Fe Content. ACS Earth and Space Chemistry, 1, 197208.CrossRefGoogle Scholar
Leal Olloqui, M. and Scott, T.B. (2017) Study of the University of Bristol. Pp. 158187 in: FEBEX-DP. Metal Corrosion and Iron-Bentonite Interaction Studies (Wersin, P. and Kober, F., editors). NAB 16–016, Nagra, Wettingen, Switzerland.Google Scholar
Luoma, S.N. (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. Pp. 5166 in: Heavy Metals in Marine Environment (Furness, R.W. and Rainbow, P.S., editors). CRC Press Inc., Boca Raton, Florida, USA.Google Scholar
Madina, V. (2016) Corrosion Study of FEBEX DP Components. Nagra Arbeitsbericht, NAB 16–054, Nagra, Wettingen, Switzerland, 107 pp. http://www.grimsel.com/febex-dp-general-files/356-nab-16-054-corrosion-study-of-febex-dp-components-1Google Scholar
Martín, P.L., Barcala, J.M., and García-Gutiérrez, M. (2006) Thermohydro-mechanical Instrumentation in a Long-term Large-scale Buffer Material Test: Mock-up Experiment at CIEMAT. Pp. 577584 in: Proceedings of 5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics, Cardiff, United Kingdom, 2006, Thomas Telford Pub.Google Scholar
Martin, F.A., Bataillon, C., and Schlegel, M.L. (2008) Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment. Journal of Nuclear Materials, 379, 8090.CrossRefGoogle Scholar
Marty, N.C.M., Fritz, B., Clement, A., and Michau, N. (2010) Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository. Applied Clay Science, 47, 8290.CrossRefGoogle Scholar
Mössbauer, R.L. (1958) Kernresonanzabsorption von Gammastrahlung in Ir191. Naturwissenschaften, 45, 538539.CrossRefGoogle Scholar
Mosser-Ruck, R., Cathelineau, M., Guillaume, D., Charpentier, D., Rousset, D., Barres, O., and Michau, N. (2010) Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite. Clays and Clay Minerals, 58, 280291.CrossRefGoogle Scholar
Murad, E. and Cashion, J.D. (2004) Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer Academic Publishers, Dordrecht, Netherlands.CrossRefGoogle Scholar
Muurinen, A., Tournassat, C., Hadi, J., and Greneche, J.M. (2014) Sorption and diffusion of Fe(II) in bentonite. Posiva Working Reports, WR-2014-04, Posiva, Olkiluoto, Finland, 84 pp. http://www.posiva.fi/files/3772/WR_2014-04.pdfGoogle Scholar
Nagra (2002) Project Opalinus Clay: Safety report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis). Nagra Technischer Bericht, NTB 02–05, Nagra, Wettingen, Switzerland, 24 pp. http://www.nagra.ch/data/documents/database/dokumente/$default/Default%20Folder/Publikationen/NTBs%202001-2010/e_ntb02-05.pdfGoogle Scholar
Papillon, F., Jullien, M., and Bataillon, C. (2003) Carbon steel behaviour in compacted clay: two long-term tests for corrosion prediction. Pp. 439454 in: proceedings of Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems (International Workshop), Maney Publishing, Cadarache, France, 2002.Google Scholar
Perronnet, M., Jullien, M., Villieras, F., Raynal, J., Bonnin, D., and Bruno, G. (2008) Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80 degrees C. Applied Clay Science, 38, 187202.CrossRefGoogle Scholar
Posiva (2012) Safety case for the disposal of spent nuclear fuel at Olkiluoto - Synthesis 2012 Posiva Reports, 2012–12, Posiva, Olkiluoto, Finland, 324 pp. http://www.posiva.fi/files/2987/Posiva_2012-12web.pdfGoogle Scholar
Rosso, K.M., Yanina, S.V., Gorski, C.A., Larese-Casanova, P., and Scherer, M.M. (2010) Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II). Environmental Science & Technology, 44, 6167.CrossRefGoogle ScholarPubMed
Schaefer, M.V., Gorski, C.A., and Scherer, M.M. (2011) Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. Environmental Science & Technology, 45, 540545.CrossRefGoogle Scholar
Schlegel, M.L., Bataillon, C., Blanc, C., Pret, D., and Foy, E. (2010) Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: characterization of the corrosion interface. Environmental Science & Technology, 44, 15031508.CrossRefGoogle ScholarPubMed
Schlegel, M.L., Bataillon, C., Brucker, F., Blanc, C., Pret, D., Foy, E., and Chorro, M. (2014) Corrosion of metal iron in contact with anoxic clay at 90 degrees C: Characterization of the corrosion products after two years of interaction. Applied Geochemistry, 51, 114.CrossRefGoogle Scholar
SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project. Volume II. SKB Tecnical Reports, TR-11-01, SKB, Stockholm, Sweden, 278 pp. http://skb.se/upload/publications/pdf/TR-11-01_vol2.pdfGoogle Scholar
Soltermann, D., Fernandes, M.M., Baeyens, B., Dahn, R., Miehe-Brendle, J., Wehrli, B., and Bradbury, M.H. (2013) Fe(II) sorption on a synthetic montmorillonite. A combined macroscopic and spectroscopic study. Environmental Science & Technology, 47, 69786986.CrossRefGoogle ScholarPubMed
Soltermann, D., Fernandes, M.M., Baeyens, B., Dahn, R., Joshi, P.A., Scheinost, A.C., and Gorski, C.A. (2014) Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization. Environmental Science & Technology, 48, 86888697.CrossRefGoogle ScholarPubMed
Stucki, J.M. (2006) Properties and behaviour of iron in clay minerals. Pp. 423476 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G., and Lagaly, G., editors). Elsevier, Amsterdam , Netherlands.CrossRefGoogle Scholar
Svensson, P.D. and Hansen, S. (2013) Redox chemistry in two iron-bentonite field experiments at Äspö Hard Rock Laboratory, Sweden: an XRD and Fe k-edge XANES study. Clays and Clay Minerals, 61, 566579.CrossRefGoogle Scholar
Svensson, D., Dueck, A., Nilsson, U., Olsson, S., Sandén, T., Lydmark, S., Jägerwall, S., Pedersen, K., and Hansen, S. (2011) Alternative buffer material - Status of the ongoing laboratory investigation of reference materials and test package 1. SKB Technical Reports, SKB TR-11-06, SKB, Stockholm, Sweden, 140 pp. http://www.skb.se/upload/publications/pdf/TR-11-06.pdfGoogle Scholar
Trincavelli, J., Limandri, S., and Bonetto, R. (2014) Standardless quantification methods in electron probe microanalysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 7685.CrossRefGoogle Scholar
Tzara, C. (1961) Diffusion des photons sur les atomes et les noyaux dans les cristaux. Journal de Physique et Le Radium, 22, 303307.CrossRefGoogle Scholar
Uyama, M., Hitomi, T., Hayagane, S., Kadota, N., Saito, H., Okamoto, S., Aoshima, K., and Osawa, M. (2017) Metal corrosion analysis by Obayashi. Pp. 2951 in: FEBEX-DP. Metal Corrosion and Iron-Bentonite Interaction Studies (Wersin, P. and Kober, F., editors). NAB 16–016, Nagra, Wettingen, Switzerland.Google Scholar
Vandenberghe, R. and De Grave, E. (2013) Application of Mössbauer Spectroscopy in Earth Sciences. Pp. 91185 in: Mössbauer Spectroscopy - Tutorial book (Yoshida, Y. and Langouche, G., editors). Springer-Verlag, Berlin Heidelberg, Germany.CrossRefGoogle Scholar
Villar, M.V., Fernández, A.M., Rivas, P., Lloret, A., Daucausse, D., Montarges-Pelletier, E., Devineau, K., Villieras, F., Hynková, E., Cechova, Z., Montenegro, L., Samper, J., Zheng, L., Robinet, J.C., Muurinen, A., Weber, H.P., Börgesson, L., Sandén, T., and Verstricht, J. (2006) FEBEX Project final report - Post-mortem bentonite analysis. ENRESA Publicación Técnica, 05–1/2006, ENRESA, Madrid, Spain, 200 pp.Google Scholar
Villar, M.V., Iglesias, R.J., Abós, H., Martínez, V., de la Rosa, C., and Manchón, M.A. (2016) FEBEX-DP on-site analyses report. Nagra Arbeitsbericht, NAB 16–12, Nagra, Wettingen, Switzerland, 115 pp. http://www.grimsel.com/febex-dp-general-files/349-nab-16-012-febex-dp-on-site-analyses-reportGoogle Scholar
Villar, M.V., Fernández, A.M., Romero, E., Dueck, A., Cuevas, J., Plötze, M., Kaufhold, S., Dohrmann, R., Iglesias, R.J., Sakaki, T., Zheng, L., Kawamoto, K., and Kober, F. (2017) FEBEX DP Post mortem THM THG Analysis Report. Nagra Arbeitsbericht, NAB 16–17, Nagra, Wettingen, Switzerland, 187 pp. https://www.nagra.ch/data/documents/database/dokumente/$default/Default%20Folder/Publikationen/NABs%202004%20-%202015/e_nab16-017.pdfGoogle Scholar
Wersin, P., Johnson, L., and Schwyn, B. (2004) Assessment of redox conditions in the near field of nuclear waste repositories: Application to the Swiss high-level and intermediate level waste disposal concept. Pp. 539544 in: Proceedings of Scientific Basis for Nuclear Waste Management XXVII, Kalmar, Sweden, 2003, Materials Research Society.Google Scholar
Wersin, P., Birgersson, M., Olsson, S., Karnland, O., and Snellman, M. (2008) Impact of corrosion-derived iron on the bentonite buffer within the KBS-3H disposal concept - the Olkiluoto site as case study. Posiva Reports, 2007–11, Posiva, Olkiluoto, Finland, 58 pp. http://www.posiva.fi/files/807/POSIVA2007-11web_16.2.09.pdfGoogle Scholar
Wersin, P., Jenni, A., and Mäder, U.K. (2015) Interaction of corroding iron with bentonite in the ABM1 experiment at Äspö, Sweden: a microscopic approach. Clays and Clay Minerals, 63, 5168.CrossRefGoogle Scholar
Wilson, J.C., Benbow, S., Sasamoto, H., Savage, D., and Watson, C. (2015) Thermodynamic and fully-coupled reactive transport models of a steel-bentonite interface. Applied Geochemistry, 61, 1028.CrossRefGoogle Scholar
Xia, X., Idemitsu, K., Arima, T., Inagaki, Y., Ishidera, T., Kurosawa, S., Iijima, K., and Sato, H. (2005) Corrosion of carbon steel in compacted bentonite and its effect on neptunium diffusion under reducing condition. Applied Clay Science, 28, 89100.CrossRefGoogle Scholar
Yanina, S.V. and Rosso, K.M. (2008) Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science, 320, 218222.CrossRefGoogle ScholarPubMed
Supplementary material: File

Hadi et al. supplementary material
Download undefined(File)
File 2.3 MB