Skip to main content
Log in

Effect of Nozzle Exit Wear on the Fluid Flow Characteristics of Supersonic Oxygen Lance

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Supersonic jet characteristics of oxygen lance nozzles have a significant influence on smelting; however, presently, little research has been carried out to investigate the influence of wear on the jet characteristics at the nozzle exit. A numerical model and aerodynamic testing platform were developed to analyze supersonic jet characteristics under different inlet pressures and wear levels at the nozzle exit. The numerical model was first validated by comparing the numerical results with the measured data of the aerodynamic testing experiment. Then, the effects of the inlet pressure and nozzle exit wear on the jet velocity and degree of aggregation were studied. An increase in the nozzle inlet pressure is conducive to an increase in jet velocity but also causes earlier jet convergence. An increase in the nozzle exit wear results in the faster attenuation of jet velocity, not only reducing the jet velocity but also leading to an earlier convergence point for each jet. The results of this study can provide theoretical support for the design of an oxygen lance nozzle and process optimization of smelting in industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.L. Wang, Y.H. Lv, W.Y. Yang, S.G. Li, and X.W. Xu: Journal of Iron and Steel Research, International, 2011, vol. 18, pp. 12-16.

    Google Scholar 

  2. J.G. Li, Y.N. Zeng, J.Q. Wang, and Z.J. Han: J. Iron Steel Res. Int., 2011, vol. 18, pp. 1-18.

    Article  Google Scholar 

  3. C.L. He, N.C. Yang, Q.M. Huang, C.T. Liu, L. Wu, Y. Hu, Z.H. Fu, and Z. Gao: Procedia Earth Planet. Sci., 2011, vol. 2, pp. 64-69.

    Article  Google Scholar 

  4. Z.F. Yuan, X. Yang, Z.X. Lv, J.N. Huang, Y.F. Pan, and E.X. Ma: J. Iron Steel Res. Int., 2007, vol. 14, pp. 1-6.

    Google Scholar 

  5. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: Metallurgical and Materials Transactions B, 2015, vol. 46, pp. 1494-1509.

    Article  Google Scholar 

  6. M. Alam, J. Naser, and G.Brooks: Metallurgical & Materials Transactions B, 2010, vol. 41, pp. 636-645.

    Article  Google Scholar 

  7. M. Lv, R. Zhu, Y.G. Guo, and Y.W. Wang: Metallurgical & Materials Transactions B, 2013, vol. 44, pp. 1560-1571.

    Article  CAS  Google Scholar 

  8. R. Sambasivam, S.N. Lenka, F. Durst, M. Bock, S. Chandra, and S.K. Ajmania: Metallurgical & Materials Transactions B, 2007, vol. 38, pp. 45-53.

    Article  Google Scholar 

  9. Z.L. Li, and D.Q. Cang: Steel research international, 2017, vol. 88, pp. 1600209.

    Article  Google Scholar 

  10. G.S. Wei, R. Zhu, T. Cheng, and F. Zhao: Journal of Iron and Steel Research, International, 2016, vol. 23, pp. 997-1006.

    Article  Google Scholar 

  11. N. Asahara, K.I. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: Steel Research International, 2011, vol. 82, pp. 587-594.

    Article  CAS  Google Scholar 

  12. A. Beketaeva, A.H. Abdalla, and Y. Moisseyeva: Applied Mechanics and Materials, 2015, vol. 798, pp. 5.

    Article  Google Scholar 

  13. X.T. Liang: Steelmaking, 2014, vol. 30, pp. 30–33 + 74.

  14. H.L. Chi, J.G. Li, and S. Feng: Iron Steel Vanadium Titanium, 2014, vol. 35, pp. 91–96.

    Google Scholar 

  15. C.Y. Wang, L.B. Yang, X.C. Li, and H.Z. Cui: China Metallurgy, 2016, vol. 26, pp. 53-58.

    Google Scholar 

  16. X.Y. Wei, R. Zhu, L.D. Liu, D.S. Zhang, and C.T. Yang: Steelmaking, 2011, vol. 27, pp. 28–30 + 43.

  17. M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou: Steel research international, 2015, vol. 86, pp. 1517-1529.

    Article  CAS  Google Scholar 

  18. W.J. Wang, Z.F. Yuan, H. Matsuura, H.X. Zhao, C. Dai, and F. Tsukihashi: ISIJ International, 2010, vol. 50, pp. 491–500.

    Article  CAS  Google Scholar 

  19. W.Y. Yang, C. Feng, M.L. Wang, Y.H. Lv, Y.B. Hu, X.Y. Peng: J. Iron Steel Res., 2017, vol. 29, pp. 807–15.

    Google Scholar 

  20. F. Liu, D. Sun, R. Zhu, and J. Ke: Ironmaking & Steelmaking, 2016, vol. 44, pp. 640-648.

    Article  Google Scholar 

  21. F.S. Garajau, M.S. Guerra, B.T. Maiaa, and P.R. Cetlinb: Engineering Failure Analysis, 2019, vol. 96, pp. 175-185.

    Article  CAS  Google Scholar 

  22. C.Feng, W.B. Tang, B.H. Liang, Y.M. Ma, W.M. Tang, H.Y. Qin, and Y.Liao: Energy for Metallurgical Industry, 2016, vol. 35, pp. 9-11.

    Google Scholar 

  23. I.M. Ghauri, M.Z. Butt, and S.M. Raza: J. Mater. Sci., 1990, vol. 25, pp. 4782–84.

    Article  CAS  Google Scholar 

  24. C.B. Liu and W.Y. Yang:Journal of Iron and Steel Research, 1993, vol.5, pp. 94-100.

    Google Scholar 

  25. E.X. Ma, Z.P. Cai, Z.M. Qian, W.S. Wei, H. Tu, C.C. Wen, D.C. Chen, and K.Q.Tang: Engineering Chemistry & Metallurgy, 1991, vol. 12, pp. 370-376.

    CAS  Google Scholar 

  26. Z.P. Cai, and C.X. Zhang: Journal of University of Science and technology Beijing, 1995, vol. 17, pp. 75-79.

    Google Scholar 

  27. C.X. Zhang, Z.P. Cai, Z.H. Xu, and Y. Liang: Journal of University of Science and Technology Beijing, 1995, vol. 17, pp. 94-99.

    CAS  Google Scholar 

  28. K. Liu: Doctoral Thesis, Northeastern University, 2008, pp. 68–69.

  29. B.B. Ji and J.P. Chen: ANSYS ICEM CFD Detailed Illustration of Grid Generation Technology, 1st ed., China Water & Power Press, Beijing, 2012, pp. 153–70.

  30. J.Z.Zhou, X.P.Xu, W.J.Chu, Z.C.Zhu, Y.H.Chen, and S.W.Lai: Applied Mechanics & Materials, 2013, vol. 423-426, pp. 1677-1684.

    Google Scholar 

  31. J.Z.Zhou, X.P.Xu, Z.C.Zhu, Y.C.Liu, W.J.Chu, and S.W.Lai: Machine Tool & Hydraulics, 2014, vol. 17, pp. 157-160.

    Google Scholar 

  32. C.X. Zhang, H. Tu, and Z.P. Cai: Journal of Iron and Steel Research,1996, vol. 8, pp. 47-50.

    Google Scholar 

  33. E.Brandaleze, E.Benavidez, V.Peirani, L.Santini, and C.Gorosurreta: Advances in Science and Technology, 2010, vol. 70, pp. 205-210.

    Article  CAS  Google Scholar 

  34. C.B. Liu, W.Y. Yang, D.C.Chen, K.Q.Tang, D.R.Zhang, and G.C.Li: Iron and Steel, 1996, vol. 3, pp. 21-26.

    Google Scholar 

  35. F.S. Garajau, M.S. Guerra, B.T. Maiaa, P.R. Cetlinb, and D.A. Moreira: AISTech 2017 Proceedings, Pennsylvania, pp. 1365–75.

Download references

Acknowledgments

The authors would like to express their thanks for the support by the National Nature Science Foundation of China (No. 51574021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhu or Guangsheng Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 13, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Zhu, R., Han, B. et al. Effect of Nozzle Exit Wear on the Fluid Flow Characteristics of Supersonic Oxygen Lance. Metall Mater Trans B 51, 187–199 (2020). https://doi.org/10.1007/s11663-019-01722-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01722-w

Navigation