Skip to main content
Log in

Experimental Liquidus Study of the Ternary CaO-ZnO-SiO2 System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Phase equilibria of the ternary CaO-ZnO-SiO2 system have been investigated at 1170 °C to 1691 °C for oxide liquid in equilibrium with air and solid oxide phases: tridymite or cristobalite SiO2 (up to two immiscible liquids), pseudowollastonite (CS) CaSiO3, rankinite (C3S2) Ca3Si2O7, dicalcium silicate (C2S) (Ca, Zn)2SiO4, tricalcium silicate (C3S) (Ca, Zn)3SiO5, lime (Ca, Zn)O, zincite (Zn, Ca)O, willemite Zn2SiO4 and hardystonite (melilite) Ca2ZnSi2O7, covering the ranges of concentrations not studied before. High-temperature equilibration on primary phase (silica) or inert metal (platinum) substrates followed by quenching and direct measurement of the Ca, Zn and Si concentrations in the phases with the electron probe X-ray microanalysis (EPMA) has been used to accurately characterize the system. Liquidus phase equilibrium data of the present authors for the CaO-ZnO-SiO2 system are essential to obtain a self-consistent set of parameters of thermodynamic models for all phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. 1. M. Shevchenko and E. Jak, Metall. Mater. Trans. B, 2018, vol. 49, pp. 159-180.

    Article  Google Scholar 

  2. 2. E.R. Segnit, J. Am. Ceram. Soc., 1954, vol. 37, pp. 273-277.

    Article  CAS  Google Scholar 

  3. R. Hansson: Phase Equilibria of Zincite Containing Systems Relevant to Zinc/Lead Smelting. Ph.D. Thesis, University of Queensland, 2005.

  4. S. Bonner: Phase Equilibria in the CaO–SiO2–ZnO System in Air. Honours Thesis, University of Queensland, 2002.

  5. 5. L. Xia, Z. Liu and P. Taskinen, J. Am. Ceram. Soc., 2016, vol. 99, pp. 3809-3815.

    Article  CAS  Google Scholar 

  6. 6. E.N. Bunting, J. Am. Ceram. Soc., 1930, vol. 13, pp. 5-10.

    Article  CAS  Google Scholar 

  7. E. Jak: Phase Equilibria to Characterise Lead/Zinc Smelting Slags and Sinters (PbO–ZnO–CaO–SiO2–Fe2O3–FeO). Ph.D. Thesis, University of Queensland, 1995.

  8. B. Zhao: Phase Equilibria for Copper Smelting and Lead/Zinc Reduction Slags. Ph.D. Thesis, The University of Queensland, 1999.

  9. 9. R. Hansson, B. Zhao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2005, vol. 36B, pp. 187-193.

    Article  CAS  Google Scholar 

  10. 10. L. Xia, Z. Liu and P.A. Taskinen, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 4005-4010.

    Article  CAS  Google Scholar 

  11. Rankin GA, Wright FE (1915) Am J Sci 39:1-79

    CAS  Google Scholar 

  12. 12. E.F. Osborn, J. Am. Ceram. Soc., 1943, vol. 26, pp. 321-332.

    Article  CAS  Google Scholar 

  13. 13. S.L. Meyers, Rock Products, 1930, vol. 33, pp. 78-79.

    Google Scholar 

  14. 14. E.T. Carlson, Rock Products, 1931, vol. 34, pp. 52-56.

    CAS  Google Scholar 

  15. Zawadski J, Gotlied J (1940) Bull Intern Acad Polon Sci Classe Sci Math Nat Ser A 1:32-34

    Google Scholar 

  16. 16. G. Tromel, W. Fix and R. Heinke, Tonindustrie-Zeitung und Keramishe Rundschau, 1969, vol. 93, pp. 1-8.

    Google Scholar 

  17. 17. J.H. Welch and W. Gutt, J. Am. Ceram. Soc., 1959, vol. 42, pp. 11-15.

    Article  CAS  Google Scholar 

  18. 18. C.W. Kanolt, Z. Anorg. Chem., 1914, vol. 85, pp. 1-19.

    Article  Google Scholar 

  19. 19. E.E. Schumacher, J. Am. Chem. Soc., 1926, vol. 48, pp. 396-405.

    Article  CAS  Google Scholar 

  20. 20. R.C. Doman, J.B. Barr, R.N. McNally and A.M. Alper, J. Am. Ceram. Soc., 1963, vol. 46, pp. 313-316.

    Article  CAS  Google Scholar 

  21. 21. V.H. Schenck, M.G. Frohberg and R. Nunninghoff, Arch. Eisenhuttenwes., 1964, vol. 35, pp. 269-277.

    CAS  Google Scholar 

  22. 22. T. Noguchi, M. Mizuno and W.M. Conn, Solar Energy, 1967, vol. 11, pp. 145-152.

    Article  CAS  Google Scholar 

  23. Traverse JP, Foex M (1969) High Temp High Press 1:409-427

    CAS  Google Scholar 

  24. Yamada T, Yoshimura M, Somiya S (1986) J Am Ceram Soc 69:243

    Article  CAS  Google Scholar 

  25. 25. Z. Panek, Silikaty (Prague), 1979, vol. 23, pp. 97-102.

    CAS  Google Scholar 

  26. 26. V. Shevchenko, L.M. Lopato, A.I. Stegny, G.I. Gerasimyuk, V.S. Dvernyakov and V.V. Pasichnys, DoklAkad Nauk SSSR, Ser A., 1979, vol. 8, pp. 682-685.

    Google Scholar 

  27. 27. J. Hlavac, Pure Appl. Chem., 1982, vol. 54, pp. 681-8.

    Article  Google Scholar 

  28. Wriedt HA (1985) Bull Alloy Phase Diagr RWTH Aachen 6:337-342

    Article  CAS  Google Scholar 

  29. 29. D. Manara, R. Boehler, L. Capriotti, A. Quaini, Z. Bao, K. Boboridis, L. Luzzi, A. Janssen, P. Poeml, R. Eloirdi and R.J.M. Konings, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1623-1636.

    Article  CAS  Google Scholar 

  30. 30. D. Belmonte, G. Ottonello and M.V. Zuccolini, CALPHAD, 2017, vol. 59, pp. 12-30.

    Article  CAS  Google Scholar 

  31. J.W. Greig, Am. J. Sci., 5th Ser., 1927, vol. 13, pp. 1-44.

  32. 32. J.D. Tewhey and P.C. Hess, Phys. Chem. Glasses, 1979, vol. 20, pp. 41-53.

    CAS  Google Scholar 

  33. 33. V.B.M. Hageman, G.J.K. Van den Berg, H.J. Janssen and H.A.J. Oonk, Phys. Chem. Glasses, 1986, vol. 27, pp. 100-106.

    CAS  Google Scholar 

  34. S. Cheng, M. Shevchenko, and E. Jak: Private Communication, PYROSEARCH, The University of Queensland, 2019.

  35. 35. K.T. Fehr and A.L. Huber, Am. Mineral., 2001, vol. 86, pp. 21-28.

    Article  CAS  Google Scholar 

  36. 36. E.J. Essene and D.R. Peacor, Am. Mineral., 1987, vol. 72, pp. 157-66.

    CAS  Google Scholar 

  37. 37. A.L. Huber, S. Heuss-Assbichler, K.T. Fehr and G.D. Bromiley, Am. Mineral., 2012, vol. 97, pp. 739-749.

    Article  CAS  Google Scholar 

  38. 38. T. Hidayat, H.M. Henao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2012, vol. 43, pp. 1034-1045.

    Article  Google Scholar 

  39. 39. E. Jak, P.C. Hayes and H.-G. Lee, Korean Journal of Minerals and Materials Institute (Seoul), 1995, vol. 1, pp. 1-8.

    CAS  Google Scholar 

  40. E. Jak: in 9th Int. Conf. Molten Slags, Fluxes Salts (MOLTEN12), The Chinese Society for Metals, 2012, p. W077.

  41. 41. M. Shevchenko and E. Jak, Ceramics International, 2019, vol. 45, pp. 6795-6803.

    Article  CAS  Google Scholar 

  42. Llovet X, Pinard PT, Donovan JJ, Salvat F (2012) J Phys D 45:225301

    Article  CAS  Google Scholar 

  43. M. Shevchenko, T. Hidayat, P. Hayes, and E. Jak: in Molten 2016, 10th Int. Conf. Molten Slags, Fluxes and Salts, 2016, pp. 1221–28.

Download references

Acknowledgments

The authors thank Nyrstar (Australia), Outotec Pty Ltd. (Australia), Aurubis AG (Germany), Umicore NV (Belgium) and Kazzinc Ltd., Glencore (Kazakhstan) and Australian Research Council Linkage Project LP150100783 for their financial support for this research. The authors are grateful to Professor Peter C. Hayes (UQ) for valuable comments and suggestions, to Ms. Suping Huang, Mr. Tony Wei, Mr. Shuyi Lou and Mr. Ryan Wright (UQ) for assistance with conducting experiments and to the Staff of the University of Queensland Centre for Microanalysis and Microscopy (CMM) for their support in maintenance and operation of scanning and electron microprobe facilities in the Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shevchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 18, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, M., Jak, E. Experimental Liquidus Study of the Ternary CaO-ZnO-SiO2 System. Metall Mater Trans B 50, 2780–2793 (2019). https://doi.org/10.1007/s11663-019-01709-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01709-7

Navigation