Skip to main content
Log in

Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Modulation of interfacial electron transfer has been proven to pave a new approach to in vivo electrochemical monitoring of brain chemistry; however, designing and establishing highly efficient electrocatalytic scheme towards neurochemicals remain a long-standing challenge. Here, we find that recently established single-atom catalyst (SAC) can be used for catalyzing the electro-chemical process of physiologically relevant chemicals and thus offers a new avenue to in vivo electrochemical biosensing. To prove this new concept, we used Co single-atom catalyst (Co-SAC), in which the atomic active sites are dispersed in ordered porous N-doping carbon matrix at atomic level, as an example of SACs for analyzing glucose as the physiologically relevant model chemicals. We found that Co-SAC catalyzes the electrochemical oxidation of hydrogen peroxide (H2O2) at a low potential of ca. +0.05 V (vs. Ag/AgCl). This property was further used for developing an oxidase-based glucose biosensor that was used subsequently as a selective detector of an online electrochemical system (OECS) for continuous monitoring of microdialysate glucose in rat brain. The OECS with Co-SAC-based glucose biosensor as the online detector was well responsive to glucose without interference from other electroactive species in brain microdialysate. This study essentially offers a new approach to in vivo electrochemical analysis with SACs as electrocatalysts to modulate interfacial electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang M, Yu P, Mao L. Acc Chem Res, 2012, 45: 533–543

    Article  CAS  Google Scholar 

  2. Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. Anal Chem, 2017, 89: 300–313

    Article  CAS  Google Scholar 

  3. Robinson DL, Hermans A, Seipel AT, Wightman RM. Chem Rev, 2008, 108: 2554–2584

    Article  CAS  Google Scholar 

  4. Wu F, Yu P, Mao L. Chem Soc Rev, 2017, 46: 2692–2704

    Article  CAS  Google Scholar 

  5. Li R, Liu X, Qiu W, Zhang M. Anal Chem, 2016, 88: 7769–7776

    Article  CAS  Google Scholar 

  6. Guo S, Yan H, Wu F, Zhao L, Yu P, Liu H, Li Y, Mao L. Anal Chem, 2017, 89: 13008–13015

    Article  CAS  Google Scholar 

  7. Zhang K, He X, Liu Y, Yu P, Fei J, Mao L. Anal Chem, 2017, 89: 6794–6799

    Article  CAS  Google Scholar 

  8. He X, Zhang K, Li T, Jiang Y, Yu P, Mao L. J Am Chem Soc, 2017, 139: 1396–1399

    Article  CAS  Google Scholar 

  9. Yan H, Guo S, Wu F, Yu P, Liu H, Li Y, Mao L. Angew Chem Int Ed, 2018, 57: 3922–3926

    Article  CAS  Google Scholar 

  10. Zhang M, Liu K, Gong K, Su L, Chen Y, Mao L. Anal Chem, 2005, 77: 6234–6242

    Article  CAS  Google Scholar 

  11. Zhang M, Liu K, Xiang L, Lin Y, Su L, Mao L. Anal Chem, 2007, 79: 6559–6565

    Article  CAS  Google Scholar 

  12. Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Angew Chem Int Ed, 2019, 58: 6616–6619

    Article  CAS  Google Scholar 

  13. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  14. Wang A, Li J, Zhang T. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  15. Liu L, Corma A. Chem Rev, 2018, 118: 4981–5079

    Article  CAS  Google Scholar 

  16. Liu J, Jin Z, Wang X, Ge J, Liu C, Xing W. Sci China Chem, 2019, 62: 669–683

    Article  CAS  Google Scholar 

  17. Huang P, Liu W, He Z, Xiao C, Yao T, Zou Y, Wang C, Qi Z, Tong W, Pan B, Wei S, Xie Y. Sci China Chem, 2018, 61: 1187–1196

    Article  CAS  Google Scholar 

  18. Fang Z, Yu G. Sci China Chem, 2018, 61: 1045–1046

    Article  CAS  Google Scholar 

  19. Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y. Angew Chem, 2017, 129: 7041–7045

    Article  Google Scholar 

  20. Chen W, Pei J, He CT, Wan J, Ren H, Zhu Y, Wang Y, Dong J, Tian S, Cheong WC, Lu S, Zheng L, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Angew Chem Int Ed, 2017, 56: 16086–16090

    Article  CAS  Google Scholar 

  21. Pan Y, Lin R, Chen Y, Liu S, Zhu W, Cao X, Chen W, Wu K, Cheong WC, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y. J Am Chem Soc, 2018, 140: 4218–4221

    Article  CAS  Google Scholar 

  22. Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y. Science, 2017, 358: 1419–1423

    Article  CAS  Google Scholar 

  23. Mao J, He CT, Pei J, Chen W, He D, He Y, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Nat Commun, 2018, 9: 4958

    Article  Google Scholar 

  24. Ma W, Mao J, Yang X, Pan C, Chen W, Wang M, Yu P, Mao L, Li Y. Chem Commun, 2019, 55: 159–162

    Article  CAS  Google Scholar 

  25. Han Y, Wang Z, Xu R, Zhang W, Chen W, Zheng L, Zhang J, Luo J, Wu K, Zhu Y, Chen C, Peng Q, Liu Q, Hu P, Wang D, Li Y. Angew Chem Int Ed, 2018, 57: 11262–11266

    Article  CAS  Google Scholar 

  26. Lin Y, Liu K, Yu P, Xiang L, Li X, Mao L. Anal Chem, 2007, 79: 9577–9583

    Article  CAS  Google Scholar 

  27. Lin Y, Li B, Hao J, Xiao T, Yang Y, Yu P, Mao L. Electrochim Acta, 2016, 209: 132–137

    Article  CAS  Google Scholar 

  28. Liu K, Yu P, Lin Y, Wang Y, Ohsaka T, Mao L. Anal Chem, 2013, 85: 9947–9954

    Article  CAS  Google Scholar 

  29. Wang X, Li Q, Xu J, Wu S, Xiao T, Hao J, Yu P, Mao L. Anal Chem, 2016, 88: 5885–5891

    Article  CAS  Google Scholar 

  30. Chan RJH, Su YO, Kuwana T. Inorg Chem, 1985, 24: 3777–3784

    Article  CAS  Google Scholar 

  31. Westbroek P, Haute BV, Temmerman E. Anal BioAnal Chem, 1996, 354: 405–409

    Article  CAS  Google Scholar 

  32. Han Y, Wang YG, Chen W, Xu R, Zheng L, Zhang J, Luo J, Shen RA, Zhu Y, Cheong WC, Chen C, Peng Q, Wang D, Li Y. J Am Chem Soc, 2017, 139: 17269–17272

    Article  CAS  Google Scholar 

  33. Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJJ. Phys Chem Chem Phys, 2012, 14: 7384–7391

    Article  CAS  Google Scholar 

  34. You T, Niwa O, Tomita M, Hirono S. Anal Chem, 2003, 75: 2080–2085

    Article  CAS  Google Scholar 

  35. Niwa O, Kato D, Kurita R, You T, Iwasaki Y, Hirono S. Sensor Mater, 2007, 19: 225–233

    CAS  Google Scholar 

  36. Yao S, Yuan S, Xu J, Wang Y, Luo J, Hu S. Appl Clay Sci, 2006, 33: 35–42

    Article  CAS  Google Scholar 

  37. Zhang L, Fang Z, Ni Y, Zhao G. Int J Electrochem Sci, 2009, 4: 407–413

    CAS  Google Scholar 

  38. Ma W, Jiang Q, Yu P, Yang L, Mao L. Anal Chem, 2013, 85: 7550–7557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21790390, 21790391, 21621062, 21435007, 21874152), the National Basic Research Program of China (2016YFA0200104) and the Chinese Academy of Sciences (QYZDJ-SSW-SLH030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meining Zhang or Lanqun Mao.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Mao, J., Han, Y. et al. Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Sci. China Chem. 62, 1720–1724 (2019). https://doi.org/10.1007/s11426-019-9605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9605-0

Keywords

Navigation