Skip to main content
Log in

Cascaded DNA circuits-programmed self-assembly of spherical nucleic acids for high signal amplification

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Signal amplification is an important issue in DNA nanotechnology and molecular diagnostics. In this work, we report a strategy for the catalytic self-assembly of spherical nucleic acids (SNAs) programmed by two-layer cascaded DNA circuits through integrating an entropy-driven catalytic network, a catalytic hairpin assembly circuit, and a facile SNA assembly-based reporter system. This integrated system could implement ~100,000-fold signal amplification in the presence of 1 pM of input target. Possessing powerful amplification ability of nucleic acid signal, our strategy should be of great potential in fabricating more robust dynamic networks to be applied for signal transduction, DNA computing, and nucleic acid-based diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. Nature, 1996, 382: 607–609

    CAS  PubMed  Google Scholar 

  2. Cutler JI, Auyeung E, Mirkin CA. J Am Chem Soc, 2012, 134: 1376–1391

    CAS  PubMed  Google Scholar 

  3. Liu J, Lu Y. J Am Chem Soc, 2003, 125: 6642–6643

    CAS  PubMed  Google Scholar 

  4. Baeissa A, Dave N, Smith BD, Liu J. ACS Appl Mater Interfaces, 2010, 2: 3594–3600

    CAS  PubMed  Google Scholar 

  5. Song T, Xiao S, Yao D, Huang F, Hu M, Liang H. Adv Mater, 2014, 26: 6181–6185

    CAS  PubMed  Google Scholar 

  6. Li Y, Wang GA, Mason SD, Yang X, Yu Z, Tang Y, Li F. Chem Sci, 2018, 9: 6434–6439

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang B, Zhou X, Yao D, Sun X, He M, Wang X, Yin X, Liang H. Chem Commun, 2017, 53: 10950–10953

    CAS  Google Scholar 

  8. Yao D, Wang B, Xiao S, Song T, Huang F, Liang H. Langmuir, 2015, 31: 7055–7061

    CAS  PubMed  Google Scholar 

  9. Yao D, Song T, Zheng B, Xiao S, Huang F, Liang H. Nanotechnology, 2015, 26: 425601

    PubMed  Google Scholar 

  10. He X, Zeng T, Li Z, Wang G, Ma N. Angew Chem Int Ed, 2016, 55: 3073–3076

    CAS  Google Scholar 

  11. Liang CP, Ma PQ, Liu H, Guo X, Yin BC, Ye BC. Angew Chem Int Ed, 2017, 56: 9077–9081

    CAS  Google Scholar 

  12. Li H, Zhou X, Yao D, Liang H. Chem Commun, 2018, 54: 3520–3523

    CAS  Google Scholar 

  13. Kyriazi ME, Giust D, El-Sagheer AH, Lackie PM, Muskens OL, Brown T, Kanaras AG. ACS Nano, 2018, 12: 3333–3340

    CAS  PubMed  Google Scholar 

  14. Li Y, Liu Z, Yu G, Jiang W, Mao C. J Am Chem Soc, 2015, 137: 4320–4323

    CAS  PubMed  Google Scholar 

  15. Ohta S, Glancy D, Chan WCW. Science, 2016, 351: 841–845

    CAS  PubMed  Google Scholar 

  16. Zhao Z, Chen C, Dong Y, Yang Z, Fan QH, Liu D. Angew Chem Int Ed, 2014, 53: 13468–13470

    CAS  Google Scholar 

  17. Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA. Science, 2011, 334: 204–208

    CAS  PubMed  Google Scholar 

  18. Laramy CR, O’Brien MN, Mirkin CA. Nat Rev Mater, 2019, 4: 201–224

    CAS  Google Scholar 

  19. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL. Nature, 2000, 406: 605–608

    CAS  PubMed  Google Scholar 

  20. Tian Y, Mao C. J Am Chem Soc, 2004, 126: 11410–11411

    CAS  PubMed  Google Scholar 

  21. Jung C, Allen PB, Ellington AD. Nat Nanotech, 2016, 11: 157–163

    CAS  Google Scholar 

  22. Thubagere AJ, Li W, Johnson RF, Chen Z, Doroudi S, Lee YL, Izatt G, Wittman S, Srinivas N, Woods D, Winfree E, Qian L. Science, 2017, 357: eaan6558

    PubMed  Google Scholar 

  23. Yin P, Choi HMT, Calvert CR, Pierce NA. Nature, 2008, 451: 318–322

    CAS  PubMed  Google Scholar 

  24. Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC. Science, 2018, 359: 296–301

    CAS  PubMed  Google Scholar 

  25. Srinivas N, Parkin J, Seelig G, Winfree E, Soloveichik D. Science, 2017, 358: eaa12052

    Google Scholar 

  26. Huang F, Xu H, Tan W, Liang H. ACS Nano, 2014, 8: 6849–6855

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang F, Zhang J, Li T, Duan R, Xia F, Willner I. Nano Lett, 2019, 19: 618–625

    CAS  PubMed  Google Scholar 

  28. Qian L, Winfree E. Science, 2011, 332: 1196–1201

    CAS  PubMed  Google Scholar 

  29. Cherry KM, Qian L. Nature, 2018, 559: 370–376

    CAS  PubMed  Google Scholar 

  30. Zhang DY, Turberfield AJ, Yurke B, Winfree E. Science, 2007, 318: 1121–1125

    CAS  PubMed  Google Scholar 

  31. Li B, Ellington AD, Chen X. Nucleic Acids Res, 2011, 39: e110

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Briggs N, McLain JR, Ellington AD. Proc Natl Acad Sci USA, 2013, 110: 5386–5391

    CAS  PubMed  Google Scholar 

  33. Zhang Z, Fan TW, Hsing IM. Nanoscale, 2017, 9: 2748–2754

    CAS  PubMed  Google Scholar 

  34. Xiong E, Zhen D, Jiang L. Chem Commun, 2018, 54: 12594–12597

    CAS  Google Scholar 

  35. Wu C, Cansiz S, Zhang L, Teng IT, Qiu L, Li J, Liu Y, Zhou C, Hu R, Zhang T, Cui C, Cui L, Tan W. J Am Chem Soc, 2015, 137: 4900–4903

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yue S, Song X, Song W, Bi S. Chem Sci, 2019, 10: 1651–1658

    CAS  PubMed  Google Scholar 

  37. Amodio A, Zhao B, Porchetta A, Idili A, Castronovo M, Fan C, Ricci F. J Am Chem Soc, 2014, 136: 16469–16472

    CAS  PubMed  Google Scholar 

  38. Yao D, Li H, Guo Y, Zhou X, Xiao S, Liang H. Chem Commun, 2016, 52: 7556–7559

    CAS  Google Scholar 

  39. Zhang DY, Hariadi RF, Choi HMT, Winfree E. Nat Commun, 2013, 4: 1965

    PubMed  PubMed Central  Google Scholar 

  40. Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. J Am Chem Soc, 2003, 125: 1643–1654

    CAS  PubMed  Google Scholar 

  41. Yao D, Song T, Sun X, Xiao S, Huang F, Liang H. J Am Chem Soc, 2015, 137: 14107–14113

    CAS  PubMed  Google Scholar 

  42. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA. J Comput Chem, 2011, 32: 170–173

    CAS  PubMed  Google Scholar 

  43. Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL. Langmuir, 2002, 18: 6666–6670

    CAS  Google Scholar 

  44. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. J Am Chem Soc, 1998, 120: 1959–1964

    CAS  Google Scholar 

  45. Oishi M, Sugiyama S. Small, 2016, 12: 5153–5158

    CAS  PubMed  Google Scholar 

  46. Guo L, Xu Y, Ferhan AR, Chen G, Kim DH. J Am Chem Soc, 2013, 135: 12338–12345

    CAS  PubMed  Google Scholar 

  47. Yao D, Xiao S, Zhou X, Li H, Wang B, Wei B, Liang H. J Mater Chem B, 2017, 5: 6256–6265

    CAS  Google Scholar 

  48. Wei B, Yao D, Zheng B, Zhou X, Guo Y, Li X, Li C, Xiao S, Liang H. ACS Appl Mater Interfaces, 2019, 11: 19724–19733

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91427304, 21434007, 51573175), the Fundamental Research Funds for the Central Universities (WK3450000002, WK2060200026, WK9110000005), the Financial Grant from the China Postdoctoral Science Foundation (2018M630708), and the National Postdoctoral Program for Innovative Talents (BX20180285). This work was additionally supported by the Foundations of Educational Committee of Anhui Province (KJ2019A0719), the Excellent Talent Foundation of Education Department of Anhui Province (gxyq2019066), and the 136 Talent Plan of Hefei Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongbao Yao or Haojun Liang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yao, D., Zhou, J. et al. Cascaded DNA circuits-programmed self-assembly of spherical nucleic acids for high signal amplification. Sci. China Chem. 63, 92–98 (2020). https://doi.org/10.1007/s11426-019-9603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9603-3

Keywords

Navigation