Skip to main content
Log in

Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The activity of polyphenoloxidase (PPO) treated by acidic pH and mild thermal processing was found to be closely related to the conformational changes. Weakly acidic environment (pH 4.0–6.0) resulted in reversible inhibition of activity and slight changes in the conformation, and refolding of PPO was observed after readjusting pH to 6.8. At pH lower than 4.0, PPO activity was strongly inhibited with great unfolding in conformation and all changes were irreversible. Acidic environment increased the susceptibility of PPO to thermal treatment, and greater changes in activity and conformation of PPO were observed under the combined treatment of acidic pH and mild thermal treatment. Besides, the inactivation of PPO induced by thermal treatment followed a biphasic kinetic model, and acidic pH increased the inactivation rate of labile and stable PPO. The combination of acidic pH and mild thermal processing expected to avoid the nutritional loss and sensory damage in fruits and vegetables caused by severe acid or temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Altunkaya, A., & Gökmen, V. (2012). Partial purification and characterization of polyphenoloxidase from durum wheat (Triticum durum L.). Journal of Cereal Science, 55(3), 300–304.

    CAS  Google Scholar 

  • Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584–602.

    CAS  Google Scholar 

  • Baltaciohlu, H., Bayindirli, A., Severcan, M., & Severcan, F. (2015). Effect of thermal treatment on secondary structure and conformational change of mushroom polyphenol oxidase (PPO) as food quality related enzyme: A FTIR study. Food Chemistry, 187, 263–269.

    Google Scholar 

  • Batista, K. A., Batista, G. L. A., Alves, G. L., & Fernandes, K. F. (2014). Extraction, partial purification and characterization of polyphenol oxidase from Solanum lycocarpum fruits. Journal of Molecular Catalysis B: Enzymatic, 102, 211–217.

    CAS  Google Scholar 

  • Bravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry, 197(Pt A), 185–190.

    CAS  PubMed  Google Scholar 

  • Broeck, I. V. D., Ludikhuyze, L. R., Loey, A. M. V., & Hendrickx, M. E. (2000). Inactivation of orange pectinesterase by combined high-pressure and -temperature treatments: a kinetic study. Journal of Agricultural & Food Chemistry, 48(5), 1960–1970.

    Google Scholar 

  • Chakraborty, S., Rao, P. S., & Mishra, H. N. (2014). Effect of pH on enzyme inactivation kinetics in high-pressure processed pineapple (Ananas comosus L.) puree using response surface methodology. Food and Bioprocess Technology, 7(12), 3629–3645.

    CAS  Google Scholar 

  • Espín, J. C., Jolivet, S., & Wichers, H. J. (1998). Inhibition of mushroom polyphenol oxidase by agaritine. Journal of Agricultural and Food Chemistry, 46(8), 2976–2980.

    Google Scholar 

  • Gouzi, H., Depagne, C., & Coradin, T. (2012). Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. Journal of Agricultural & Food Chemistry, 60(1), 500–506.

    CAS  Google Scholar 

  • Goyeneche, R., Scala, K. D., & Roura, S. (2013). Biochemical characterization and thermal inactivation of polyphenol oxidase from radish (Raphanus sativus var. sativus). LWT - Food Science and Technology, 54(1), 57–62.

    CAS  Google Scholar 

  • Hu, W. J., Yan, L., Park, D., Jeong, H. O., Chung, H. Y., Yang, J. M., Ye, Z. M., & Qian, G. Y. (2012). Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose. International Journal of Biological Macromolecules, 50(3), 694–700.

    CAS  PubMed  Google Scholar 

  • Ioniţă, E., Aprodu, I., Stănciuc, N., Râpeanu, G., & Bahrim, G. (2014). Advances in structure–function relationships of tyrosinase from Agaricus bisporus – Investigation on heat-induced conformational changes. Food Chemistry, 156(2), 129–136.

    PubMed  Google Scholar 

  • Ionita, E., Stanciuc, N., Aprodu, I., Rapeanu, G., & Bahrim, G. (2014). pH-induced structural changes of tyrosinase from Agaricus bisporus using fluorescence and in silico methods. Journal of the Science of Food and Agriculture, 94(11), 2338–2344.

    CAS  PubMed  Google Scholar 

  • Kanade, S. R., Paul, B., Rao, A. G., & Gowda, L. R. (2006). The conformational state of polyphenol oxidase from field bean (Dolichos lablab) upon SDS and acid-pH activation. Biochemical Journal, 395(3), 551–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klabunde, T., Eicken, C., Sacchettini, J. C., & Krebs, B. (1998). Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural Biology, 5(12), 1084–1090.

    CAS  PubMed  Google Scholar 

  • Kunugi, S. (1993). Modification of biopolymer functions by high pressure. Progress in Polymer Science, 18(4), 805–838.

    CAS  Google Scholar 

  • Liu, W., Zou, L. Q., Liu, J. P., Zhang, Z. Q., Liu, C. M., & Liang, R. H. (2013). The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chemistry, 140(1-2), 289–295.

    CAS  PubMed  Google Scholar 

  • Lu, X., Sun, D., Li, Y., Shi, W., & Sun, G. (2011). Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Scientia Horticulturae, 130(1), 97–101.

    CAS  Google Scholar 

  • Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry, 67(21), 2318–2331.

    CAS  PubMed  Google Scholar 

  • McCord, J. D., & Kilara, A. (1983). Control of enzymatic browning in processed mushrooms (Agaricus bisporus). Journal of Food Science, 48(5), 1479–1484.

    CAS  Google Scholar 

  • McEvily, A. J., Iyengar, R., & Otwell, W. S. (1992). Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition, 32(3), 253–273.

    CAS  PubMed  Google Scholar 

  • Mosneaguta, R., Alvarez, V., & Barringer, S. A. (2012). The effect of antibrowning agents on inhibition of potato browning, volatile organic compound profile, and microbial inhibition. Journal of Food Science, 77(11), 1234–1240.

    Google Scholar 

  • Palma-Orozco, G., Marrufo-Hernandez, N. A., Sampedro, J. G., & Najera, H. (2014). Purification and partial biochemical characterization of polyphenol oxidase from mango (Mangifera indica cv. Manila). Journal of Agricultural and Food Chemistry, 62(40), 9832–9840.

    CAS  PubMed  Google Scholar 

  • Pellicer, J. A., Navarro, P., & Gómez-López, V. M. (2018). Pulsed light inactivation of mushroom polyphenol oxidase: a fluorometric and spectrophotometric study. Food and Bioprocess Technology, 11(3), 603–609.

    CAS  Google Scholar 

  • Saki, N., Akin, M., Alici, E. H., & Arabaci, G. (2018). Partial purification and characterization of polyphenol oxidase from the wild edible mushroom Lepiota Procera using three-phase partitioning. International Journal of Food Engineering, 14(9-10), 1–9.

    CAS  Google Scholar 

  • Siddiq, M., & Dolan, K. D. (2017). Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chemistry, 218, 216–220.

    CAS  PubMed  Google Scholar 

  • Siguemoto, E. S., Pereira, L. J., & Gut, J. A. W. (2018). Inactivation kinetics of pectin methylesterase, polyphenol oxidase, and peroxidase in cloudy apple juice under microwave and conventional heating to evaluate non-thermal microwave effects. Food and Bioprocess Technology, 11(7), 1359–1369.

    CAS  Google Scholar 

  • Sulaiman, A., Ming, J. S., Farid, M., & Silva, F. V. M. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165, 133–140.

    CAS  Google Scholar 

  • Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science & Emerging Technologies, 11(1), 52–60.

    CAS  Google Scholar 

  • Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing. Critical Reviews in Food Science and Nutrition, 54(1), 24–63.

    CAS  PubMed  Google Scholar 

  • Todaro, A., Peluso, O., Catalano, A. E., Mauromicale, G., & Spagna, G. (2010). Polyphenol oxidase activity from three sicilian artichoke [Cynara cardunculus L. Var. scolymus L. (Fiori)] cultivars: studies and technological application on minimally processed production. Journal of Agricultural & Food Chemistry, 58(3), 1714–1718.

    CAS  Google Scholar 

  • Wang, Y., Zhang, G., Yan, J., & Gong, D. (2014). Inhibitory effect of morin on tyrosinase: insights from spectroscopic and molecular docking studies. Food Chemistry, 163, 226–233.

    CAS  PubMed  Google Scholar 

  • Weemaes, C. A., Ludikhuyze, L. R., Van den Broeck, I., & Hendrickx, M. E. (1998). Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: a kinetic study. Journal of Agricultural and Food Chemistry, 46(7), 2785–2792.

    CAS  Google Scholar 

  • Wu, J., Gao, J., Chen, H., Liu, X., Cheng, W., Ma, X., et al. (2013). Purification and characterization of polyphenol oxidase from Agaricus bisporus. International Journal of Food Properties, 16(7), 1483–1493.

    CAS  Google Scholar 

  • Yi, J., Jiang, B., Zhang, Z., Liao, X., Zhang, Y., & Hu, X. (2012). Effect of ultrahigh hydrostatic pressure on the activity and structure of mushroom (Agaricus bisporus) polyphenoloxidase. Journal of Agricultural & Food Chemistry, 60(2), 593–599.

    CAS  Google Scholar 

  • Zhong, J. Z., Liu, W., Liu, C. M., Wang, Q. H., Li, T., Tu, Z. C., Luo, S. J., Cai, X. F., & Xu, Y. J. (2012). Aggregation and conformational changes of bovine β-lactoglobulin subjected to dynamic high-pressure microfluidization in relation to antigenicity. Journal of Dairy Science, 95(8), 4237–4245.

    CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, W., Xiong, Z., Zou, L., Chen, J., Liu, J., & Zhong, J. (2016a). Different modes of inhibition for organic acids on polyphenoloxidase. Food Chemistry, 199, 439–446.

    CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, W., Xiong, Z., Zou, L., Liu, J., Zhong, J., & Chen, J. (2016b). Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase. Enzyme and Microbial Technology, 90, 61–68.

    CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, W., Zou, L., Xiong, Z., Hu, X., & Chen, J. (2017a). Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chemistry, 214, 423–431.

    CAS  PubMed  Google Scholar 

  • Zhou, L., Xiong, Z., Liu, W., & Zou, L. (2017b). Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase. Food Chemistry, 234, 445–454.

    CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, W., Stockmann, R., & Terefe, N. S. (2018a). Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree. Innovative Food Science & Emerging Technologies, 45, 196–207.

    CAS  Google Scholar 

  • Zhou, L., Liu, W., & Terefe, N. S. (2018b). The inactivation kinetics of soluble and membrane-bound polyphenol oxidase in pear during thermal and high-pressure processing. Food and Bioprocess Technology, 11(5), 1039–1049.

    CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (31860452), China Postdoctoral Science Foundation (2019M652288), Jiangxi Province Science Foundation for Youths (20181BAB214019), and Jiangxi Province Education Department Science Foundation (GJJ160190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Liao, T., Liu, J. et al. Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment. Food Bioprocess Technol 12, 1907–1916 (2019). https://doi.org/10.1007/s11947-019-02354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02354-3

Keywords

Navigation