Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology

Abstract

Nonalcoholic fatty liver disease (NAFLD) affects around a quarter of the global population, paralleling worldwide increases in obesity and metabolic syndrome. NAFLD arises in the context of systemic metabolic dysfunction that concomitantly amplifies the risk of cardiovascular disease and diabetes. These interrelated conditions have long been recognized to have a heritable component, and advances using unbiased association studies followed by functional characterization have created a paradigm for unravelling the genetic architecture of these conditions. A novel perspective is to characterize the shared genetic basis of NAFLD and other related disorders. This information on shared genetic risks and their biological overlap should in future enable the development of precision medicine approaches through better patient stratification, and enable the identification of preventive and therapeutic strategies. In this Review, we discuss current knowledge of the genetic basis of NAFLD and of possible pleiotropy between NAFLD and other liver diseases as well as other related metabolic disorders. We also discuss evidence of causality in NAFLD and other related diseases and the translational significance of such evidence, and future challenges from the study of genetic pleiotropy.

Key points

  • Nonalcoholic fatty liver disease (NAFLD) is a liver disorder with high heritability, and no approved pharmacotherapy to date.

  • Although our understanding of the genetic underpinnings of NAFLD has advanced, known risk variants explain only a small fraction of heritability, suggesting the existence of ‘missing heritability’.

  • There is evidence for shared genetic modifiers and common pathophysiological pathways that link NAFLD, other liver diseases and related metabolic disorders.

  • Research has now progressed beyond genome-wide association studies (GWAS) to broader, causal and functional discovery via multi-trait GWAS, phenome-wide association studies (PheWAS), Mendelian randomization and functional annotation studies.

  • The next wave of genetic studies should have substantial translational implications for both drug discovery and personalization of medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of a genome-wide association study and a phenome-wide association study.
Fig. 2: The pleiotropic effects of NAFLD risk loci.
Fig. 3: Schematic representation of Mendelian randomization and its use in NAFLD research.
Fig. 4: Genetic variants related to the ‘metabolically healthy obese’ phenotype.
Fig. 5: An illustration of how human genetics can guide the efforts to achieve personalized medicine.

Similar content being viewed by others

References

  1. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).

    PubMed  Google Scholar 

  2. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    PubMed  Google Scholar 

  3. Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J. Hepatol. 69, 896–904 (2018).

    PubMed  Google Scholar 

  4. Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018).

    PubMed  Google Scholar 

  5. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong, R. J. et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148, 547–555 (2015).

    PubMed  Google Scholar 

  7. Adams, L. A. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129, 113–121 (2005).

    PubMed  Google Scholar 

  8. Trefts, E., Gannon, M. & Wasserman, D. H. The liver. Curr. Biol. 27, R1147–R1151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gastaldelli, A. Fatty liver disease: the hepatic manifestation of metabolic syndrome. Hypertens. Res. 33, 546–547 (2010).

    PubMed  Google Scholar 

  10. Kotronen, A. & Yki-Jarvinen, H. Fatty liver — a novel component of the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 27–38 (2008).

    CAS  PubMed  Google Scholar 

  11. Lonardo, A., Nascimbeni, F., Mantovani, A. & Targher, G. Hypertension, diabetes, atherosclerosis and NASH: cause or consequence? J. Hepatol. 68, 335–352 (2018).

    PubMed  Google Scholar 

  12. Targher, G., Day, C. P. & Bonora, E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 363, 1341–1350 (2010).

    CAS  PubMed  Google Scholar 

  13. Eslam, M. & George, J. Genetic and epigenetic mechanisms of NASH. Hepatol. Int. 10, 394–406 (2016).

    PubMed  Google Scholar 

  14. Cui, J. et al. Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. Hepatology 64, 1547–1558 (2016).

    CAS  PubMed  Google Scholar 

  15. Schwimmer, J. B. et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology 136, 1585–1592 (2009).

    PubMed  Google Scholar 

  16. Eslam, M., Valenti, L. & Romeo, S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J. Hepatol. 68, 268–279 (2018).

    CAS  PubMed  Google Scholar 

  17. Caussy, C. et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J. Clin. Invest. 127, 2697–2704 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Loomba, R. et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 149, 1784–1793 (2015).

    PubMed  Google Scholar 

  19. Wagenknecht, L. E. et al. Correlates and heritability of nonalcoholic fatty liver disease in a minority cohort. Obesity 17, 1240–1246 (2009).

    CAS  Google Scholar 

  20. Palmer, N. D. et al. Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent. Hepatology 58, 966–975 (2013).

    CAS  PubMed  Google Scholar 

  21. Stunkard, A. J., Foch, T. T. & Hrubec, Z. A twin study of human obesity. JAMA 256, 51–54 (1986).

    CAS  PubMed  Google Scholar 

  22. Poulsen, P., Kyvik, K. O., Vaag, A. & Beck-Nielsen, H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance — a population-based twin study. Diabetologia 42, 139–145 (1999).

    CAS  PubMed  Google Scholar 

  23. Hottenga, J. J. et al. Heritability and stability of resting blood pressure. Twin Res. Hum. Genet. 8, 499–508 (2005).

    PubMed  Google Scholar 

  24. Knoblauch, H. et al. Heritability analysis of lipids and three gene loci in twins link the macrophage scavenger receptor to HDL cholesterol concentrations. Arterioscler. Thromb. Vasc. Biol. 17, 2054–2060 (1997).

    CAS  PubMed  Google Scholar 

  25. Zdravkovic, S. et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J. Intern. Med. 252, 247–254 (2002).

    CAS  PubMed  Google Scholar 

  26. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    CAS  PubMed  Google Scholar 

  27. Eslam, M. & George, J. Genome-wide association studies and hepatitis C: harvesting the benefits of the genomic revolution. Semin. Liver Dis. 35, 402–420 (2015).

    PubMed  Google Scholar 

  28. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sookoian, S. et al. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J. Lipid Res. 50, 2111–2116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Valenti, L. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51, 1209–1217 (2010).

    CAS  PubMed  Google Scholar 

  31. Liu, Y. L. et al. Carriage of the PNPLA3 rs738409 C>G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 61, 75–81 (2014).

    CAS  Google Scholar 

  32. Jenkins, C. M. et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975 (2004).

    CAS  PubMed  Google Scholar 

  33. Bruschi, F. V. et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 65, 1875–1890 (2017).

    CAS  PubMed  Google Scholar 

  34. Pirazzi, C. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23, 4077–4085 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Eslam, M. et al. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes. Hepatology 64, 34–46 (2016).

    CAS  PubMed  Google Scholar 

  36. Holmen, O. L. et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat. Genet. 46, 345–351 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, Y. L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).

  39. Dongiovanni, P. et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61, 506–514 (2015).

    CAS  PubMed  Google Scholar 

  40. Mahdessian, H. et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc. Natl Acad. Sci. USA 111, 8913–8918 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, T.-T. et al. TM6SF2: a novel target for plasma lipid regulation. Atherosclerosis 268, 170–176 (2018).

    CAS  PubMed  Google Scholar 

  42. Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLOS Genet. 7, e1001324 (2011).

  43. Valenti, L., Alisi, A. & Nobili, V. Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms. Hepatology 55, 661–663 (2012).

    PubMed  Google Scholar 

  44. Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, Y. et al. 17-Beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology 69, 1504–1519 (2019).

  46. Metwally, M. et al. A polymorphism in the irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3′UTR. J. Hepatol. 70, 494–500 (2019).

    CAS  PubMed  Google Scholar 

  47. Buch, S. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 47, 1443–1448 (2015).

    CAS  PubMed  Google Scholar 

  48. Vigano, M. et al. Patatin-like phospholipase domain-containing 3 I148M affects liver steatosis in patients with chronic hepatitis B. Hepatology 58, 1245–1252 (2013).

    CAS  PubMed  Google Scholar 

  49. Milano, M. et al. Transmembrane 6 superfamily member 2 gene E167K variant impacts on steatosis and liver damage in chronic hepatitis C patients. Hepatology 62, 111–117 (2015).

    CAS  PubMed  Google Scholar 

  50. Mancina, R. M. et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 150, 1219–1230.e6 (2016).

    CAS  PubMed  Google Scholar 

  51. Donati, B. et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci. Rep. 7, 4492 (2017).

  52. Thabet, K. et al. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C. Nat. Commun. 7, 12757 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thabet, K. et al. The membrane-bound O-acyltransferase domain-containing 7 variant rs641738 increases inflammation and fibrosis in chronic hepatitis B. Hepatology 65, 1840–1850 (2017).

    CAS  PubMed  Google Scholar 

  54. Patin, E. et al. Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection. Gastroenterology 143, 1244–1252.e12 (2012).

    CAS  PubMed  Google Scholar 

  55. Musso, G. et al. MERTK rs4374383 variant predicts incident nonalcoholic fatty liver disease and diabetes: role of mononuclear cell activation and adipokine response to dietary fat. Hum. Mol. Genet. 26, 1747–1758 (2017).

    CAS  PubMed  Google Scholar 

  56. Petta, S. et al. MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 64, 682–690 (2016).

    CAS  PubMed  Google Scholar 

  57. Ochodnicky, P. et al. Increased circulating and urinary levels of soluble TAM receptors in diabetic nephropathy. Am. J. Pathol. 187, 1971–1983 (2017).

    CAS  PubMed  Google Scholar 

  58. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat. Genet. 41, 1100–1104 (2009).

    CAS  PubMed  Google Scholar 

  59. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    CAS  PubMed  Google Scholar 

  60. Thomas, D. L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Eslam, M. et al. Interferon-λ rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. Nat. Commun. 6, 6422 (2015).

    CAS  PubMed  Google Scholar 

  62. Eslam, M. et al. FibroGENE: a gene-based model for staging liver fibrosis. J. Hepatol. 64, 390–398 (2016).

    CAS  PubMed  Google Scholar 

  63. Petta, S. et al. Interferon lambda 4 rs368234815 TT>delta G variant is associated with liver damage in patients with nonalcoholic fatty liver disease. Hepatology 66, 1885–1893 (2017).

    CAS  PubMed  Google Scholar 

  64. Eslam, M. et al. IFN-λ3, not IFN-λ4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis. Nat. Genet. 49, 795–800 (2017).

    CAS  PubMed  Google Scholar 

  65. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sookoian, S. & Pirola, C. J. Genetic predisposition in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 23, 1–12 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Trerotola, M., Relli, V., Simeone, P. & Alberti, S. Epigenetic inheritance and the missing heritability. Hum. Genomics 9, 17 (2015).

  68. Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    CAS  PubMed  Google Scholar 

  69. Stender, S. et al. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat. Genet. 49, 842–847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483–495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, Y. S. & Lubberstedt, T. Molecular basis of trait correlations. Trends Plant Sci. 15, 454–461 (2010).

    CAS  PubMed  Google Scholar 

  72. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Visscher, P. M. & Yang, J. A plethora of pleiotropy across complex traits. Nat. Genet. 48, 707–708 (2016).

    CAS  PubMed  Google Scholar 

  74. Chesmore, K., Bartlett, J. & Williams, S. M. The ubiquity of pleiotropy in human disease. Hum. Genet. 137, 39–44 (2018).

    CAS  PubMed  Google Scholar 

  75. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    CAS  PubMed  Google Scholar 

  76. Cotsapas, C. & Hafler, D. A. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol. 34, 22–26 (2013).

    CAS  PubMed  Google Scholar 

  77. O’Donovan, M. C. & Owen, M. J. The implications of the shared genetics of psychiatric disorders. Nat. Med. 22, 1214–1219 (2016).

    PubMed  Google Scholar 

  78. Hobbs, B. D. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 49, 426–432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Verma, A. & Ritchie, M. D. Current scope and challenges in phenome-wide association studies. Curr. Epidemiol. Rep. 4, 321–329 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Sookoian, S. et al. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am. J. Clin. Nutr. 103, 422–434 (2016).

    CAS  PubMed  Google Scholar 

  82. Radcke, S., Dillon, J. F. & Murray, A. L. A systematic review of the prevalence of mildly abnormal liver function tests and associated health outcomes. Eur. J. Gastroenterol. Hepatol. 27, 1–7 (2015).

    CAS  PubMed  Google Scholar 

  83. Oh, R. C., Hustead, T. R., Ali, S. M. & Pantsari, M. W. Mildly elevated liver transaminase levels: causes and evaluation. Am. Fam. Physician 96, 709–715 (2017).

    PubMed  Google Scholar 

  84. Mahady, S. E. et al. Elevated liver enzymes and mortality in older individuals a prospective cohort study. J. Clin. Gastroenterol. 51, 439–445 (2017).

    CAS  PubMed  Google Scholar 

  85. Loomba, R. et al. Genetic covariance between λ-glutamyl transpeptidase and fatty liver risk factors: role of β2-adrenergic receptor genetic variation in twins. Gastroenterology 139, 836–845.e1 (2010).

    CAS  PubMed  Google Scholar 

  86. Caussy, C. et al. Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology 68, 918–932 (2018).

    CAS  PubMed  Google Scholar 

  87. Byrne, C. D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62, S47–S64 (2015).

    PubMed  Google Scholar 

  88. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Simons, N. et al. PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery disease. Gastroenterology 152, 912–913 (2017).

    CAS  PubMed  Google Scholar 

  90. Ruschenbaum, S. et al. Patatin-like phospholipase domain containing 3 variants differentially impact metabolic traits in individuals at high risk for cardiovascular events. Hepatol. Commun. 2, 798–806 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Meffert, P. J. et al. The PNPLA3 SNP rs738409:G allele is associated with increased liver disease-associated mortality but reduced overall mortality in a population-based cohort. J. Hepatol. 68, 858–860 (2018).

    CAS  PubMed  Google Scholar 

  93. Diogo, D. et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat. Commun. 9, 4285 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Chen, Z. M. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. White, H. D. et al. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med. 370, 1702–1711 (2014).

    CAS  PubMed  Google Scholar 

  96. Fall, T. et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLOS Med. 10, e1001474 (2013).

  97. Shea, J. L., Randell, E. W. & Sun, G. A. The prevalence of metabolically healthy obese subjects defined by BMI and dual-energy X-ray absorptiometry. Obesity 19, 624–630 (2011).

    CAS  Google Scholar 

  98. Munoz-Garach, A., Cornejo-Pareja, I. & Tinahones, F. J. Does metabolically healthy obesity exist? Nutrients 8, 320 (2016).

    PubMed Central  Google Scholar 

  99. Despres, J. P. Body fat distribution and risk of cardiovascular disease an update. Circulation 126, 1301–1313 (2012).

    PubMed  Google Scholar 

  100. Loos, R. J. F. & Kilpelainen, T. O. Genes that make you fat, but keep you healthy. J. Intern. Med. 284, 450–463 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fehlert, E. et al. Genetic determination of body fat distribution and the attributive influence on metabolism. Obesity 25, 1277–1283 (2017).

    CAS  Google Scholar 

  103. Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 49, 17–26 (2017).

    CAS  PubMed  Google Scholar 

  104. Ji, Y. et al. Genome-wide and abdominal MRI-imaging data provides evidence that a genetically determined favourable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease and hypertension. Diabetes 68, 207–219 (2019).

  105. Yaghootkar, H. et al. Genetic evidence for a link between favorable adiposity and lower risk of type 2 diabetes, hypertension, and heart disease. Diabetes 65, 2448–2460 (2016).

    CAS  PubMed  Google Scholar 

  106. Willecke, F. et al. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice. Arterioscler. Thromb. Vasc. Biol. 35, 102–110 (2015).

    CAS  PubMed  Google Scholar 

  107. Gusarova, V. et al. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat. Commun. 9, 2252 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Conen, D. et al. Use of a mendelian randomization approach to assess the causal relation of γ-glutamyltransferase with blood pressure and serum insulin levels. Am. J. Epidemiol. 172, 1431–1441 (2010).

    PubMed  Google Scholar 

  109. Chen, S. C. C. et al. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: a prospective study of 132,377 adults. Sci. Rep. 7, 4649 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Noordam, R., Smit, R. A. J., Postmus, I., Trompet, S. & van Heemst, D. Assessment of causality between serum gamma-glutamyltransferase and type 2 diabetes mellitus using publicly available data: a Mendelian randomization study. Int. J. Epidemiol. 45, 1953–1960 (2016).

    PubMed  Google Scholar 

  111. Dongiovanni, P. et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J. Intern. Med. 283, 356–370 (2018).

    CAS  PubMed  Google Scholar 

  112. Loomba, R. et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 56, 943–951 (2012).

    PubMed  Google Scholar 

  113. Wild, S. H. et al. Cardiovascular disease, cancer, and mortality among people with type 2 diabetes and alcoholic or nonalcoholic fatty liver disease hospital admission. Diabetes Care 41, 341–347 (2018).

    PubMed  Google Scholar 

  114. Preiss, D. et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 305, 2556–2564 (2011).

    CAS  PubMed  Google Scholar 

  115. Fall, T. et al. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes 64, 2676–2684 (2015).

    CAS  PubMed  Google Scholar 

  116. Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 385, 351–361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, Z. H. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

  118. Li, N. S. et al. Pleiotropic effects of lipid genes on plasma glucose, HbA(1c), and HOMA-IR levels. Diabetes 63, 3149–3158 (2014).

    PubMed  Google Scholar 

  119. De Silva, N. M. G. et al. Mendelian randomization studies do not support a role for raised circulating triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Diabetes 60, 1008–1018 (2011).

    PubMed  PubMed Central  Google Scholar 

  120. Xu, L. et al. Mendelian randomization estimates of alanine aminotransferase with cardiovascular disease: Guangzhou Biobank Cohort study. Hum. Mol. Genet. 26, 430–437 (2017).

    CAS  PubMed  Google Scholar 

  121. Liu, J. X., Yeung, S. L. A., Lin, S. L., Leung, G. M. & Schooling, C. M. Liver enzymes and risk of ischemic heart disease and type 2 diabetes mellitus: a Mendelian randomization study. Sci. Rep. 6, 38813 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lauridsen, B. K. et al. Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279 013 individuals. Eur. Heart J. 39, 385–393 (2018).

    CAS  PubMed  Google Scholar 

  123. Zheng, J. et al. Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep. 4, 330–345 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Soderberg, C. et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 51, 595–602 (2010).

    PubMed  Google Scholar 

  125. Vilar-Gomez, E. et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 155, 443–457.e17 (2018).

    PubMed  Google Scholar 

  126. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

    CAS  PubMed  Google Scholar 

  127. Hall, M. A. et al. Detection of pleiotropy through a phenome-wide association study (PheWAS) of epidemiologic data as part of the environmental architecture for genes linked to environment (EAGLE) study. PLOS Genet. 10, e1004678 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).

    CAS  PubMed  Google Scholar 

  130. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cronin, R. M. et al. Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index. Front. Genet. 5, 250 (2014).

  133. Rao, A. S. et al. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. Circ. Genom. Precis. Med. 11, e002162 (2018).

    CAS  Google Scholar 

  134. Ruscica, M. et al. Liver fat accumulation is associated with circulating PCSK9. Ann. Med. 48, 384–391 (2016).

    CAS  PubMed  Google Scholar 

  135. Lee, S. et al. Network analyses identify liver-specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Theocharidou, E. et al. The role of PCSK9 in the pathogenesis of non-alcoholic fatty liver disease and the effect of PCSK9 inhibitors. Curr. Pharm. Des. 24, 3654–3657 (2018).

    CAS  PubMed  Google Scholar 

  137. Leung, C., Rivera, L., Furness, J. B. & Angus, P. W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 13, 412–425 (2016).

    CAS  PubMed  Google Scholar 

  138. Sanyal, A. et al. BMS-986036 (pegylated FGF21) in patients with non-alcoholic steatohepatitis: a phase 2 study. J. Hepatol. 66, S89–S90 (2017).

    Google Scholar 

  139. Frayling, T. M. et al. A common allele in FGF21 associated with sugar intake is associated with body shape, lower total body-fat percentage, and higher blood pressure. Cell Rep. 23, 327–336 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Gallego-Durán, R. et al. Genetic and functional analysis of FGF21 in NAFLD/NASH [abstract THU 472]. J. Hepatol. 68 (Suppl. 1), S342–S343 (2018).

    Google Scholar 

  141. Jiang, S. et al. The single nucleotide polymorphism rs499765 is associated with fibroblast growth factor 21 and nonalcoholic fatty liver disease in a Chinese population with normal glucose tolerance. J. Nutrigenet. Nutrigenomics 7, 121–129 (2014).

    CAS  PubMed  Google Scholar 

  142. Cheung, C. Y. Y. et al. An exome-chip association analysis in Chinese subjects reveals a functional missense variant of GCKR that regulates FGF21 levels. Diabetes 66, 1723–1728 (2017).

    CAS  PubMed  Google Scholar 

  143. Qayyum, F. et al. Genetic variants in CYP7A1 and risk of myocardial infarction and symptomatic gallstone disease. Eur. Heart J. 39, 2106–2116 (2018).

    CAS  PubMed  Google Scholar 

  144. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    CAS  PubMed  Google Scholar 

  147. Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699 (2017).

  148. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Dashti HS, M. J., Lane J. M. & Saxena R. Multitrait genome-wide association analysis of macronutrient intake identifies 12 novel loci for dietary intake and unravels genetic overlap with lifestyle traits and cardiometabolic diseases. Diabetes 67 (Suppl. 1), 176-OR (2018).

  150. Pettinelli, P. et al. Altered hepatic genes related to retinol metabolism and plasma retinol in patients with non-alcoholic fatty liver disease. PLOS ONE 13, e0205747 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Baselli, G. & Valenti, L. Beyond fat accumulation, NAFLD genetics converges on lipid droplet biology. J. Lipid Res. 60, 7–8 (2019).

    CAS  PubMed  Google Scholar 

  152. Tyler, A. L., Asselbergs, F. W., Williams, S. M. & Moore, J. H. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31, 220–227 (2009).

    PubMed  PubMed Central  Google Scholar 

  153. Li, L. et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7, 311ra174 (2015).

    PubMed  PubMed Central  Google Scholar 

  154. Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLOS Med. 15, e1002654 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Winkler, T. W. et al. A joint view on genetic variants for adiposity differentiates subtypes with distinct metabolic implications. Nat. Commun. 9, 1946 (2018).

  156. Chakrabarti, A. M. et al. Target-specific precision of CRISPR-mediated genome editing. Mol. Cell 73, 699–713.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Scott, A. How CRISPR is transforming drug discovery. Nature 555, S10–S11 (2018).

    CAS  Google Scholar 

  158. Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C. & Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol. 53, 372–384 (2010).

    PubMed  Google Scholar 

  159. Imajo, K. et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 150, 626–637.e7 (2016).

    PubMed  Google Scholar 

  160. Yoneda, M. et al. Transient elastography in patients with non-alcoholic fatty liver disease (NAFLD). Gut. 56, 1330–1331 (2007).

    PubMed  PubMed Central  Google Scholar 

  161. Daniels, S. J. et al. ADAPT: an algorithm incorporating PRO-C3 accurately identifies patients with NAFLD and advanced fibrosis. Hepatology 69, 1075–1086 (2019).

  162. Angulo, P. et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45, 846–854 (2007).

    CAS  PubMed  Google Scholar 

  163. Stunkard, A. J., Harris, J. R., Pedersen, N. L. & Mcclearn, G. E. The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322, 1483–1487 (1990).

    CAS  PubMed  Google Scholar 

  164. Jermendy, G. et al. Effect of genetic and environmental influences on cardiometabolic risk factors: a twin study. Cardiovasc. Diabetol. 10, 96 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Goode, E. L., Cherny, S. S., Christian, J. C., Jarvik, G. P. & de Andrade, M. Heritability of longitudinal measures of body mass index and lipid and lipoprotein levels in aging twins. Twin Res. Hum. Genet. 10, 703–711 (2007).

    PubMed  Google Scholar 

  166. Pietilainen, K. H. et al. Distribution and heritability of BMI in Finnish adolescents aged 16y and 17y: a study of 4884 twins and 2509 singletons. Int. J. Obes. Relat. Metab. Disord. 23, 107–115 (1999).

    CAS  PubMed  Google Scholar 

  167. Kaprio, J. et al. Concordance for type-1 (insulin-dependent) and type-2 (non-insulin-dependent) diabetes-mellitus in a population-based cohort of twins in Finland. Diabetologia 35, 1060–1067 (1992).

    CAS  PubMed  Google Scholar 

  168. Newman, B. et al. Concordance for type-2 (non-insulin-dependent) diabetes-mellitus in male twins. Diabetologia 30, 763–768 (1987).

    CAS  PubMed  Google Scholar 

  169. Medici, F., Hawa, M., Ianari, A., Pyke, D. A. & Leslie, R. D. G. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 42, 146–150 (1999).

    CAS  PubMed  Google Scholar 

  170. Almgren, P. et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54, 2811–2819 (2011).

    CAS  PubMed  Google Scholar 

  171. Hottenga, J. J., Whitfield, J. B., de Geus, E. J. C., Boomsma, D. I. & Martin, N. G. Heritability and stability of resting blood pressure in Australian twins. Twin Res. Hum. Genet. 9, 205–209 (2006).

    PubMed  Google Scholar 

  172. van Rijn, M. J. E. et al. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J. Hypertens. 25, 565–570 (2007).

    PubMed  Google Scholar 

  173. Wienke, A., Holm, N. V., Skytthe, A. & Yashin, A. I. The heritability of mortality due to heart diseases: a correlated frailty model applied to Danish twins. Twin Res. 4, 266–274 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.E. and J.G. are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney, National Health and Medical Research Council of Australia (NHMRC) Program Grants (APP1053206 and APP1149976) and Project Grants (APP1107178 and APP1108422).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding authors

Correspondence to Mohammed Eslam or Jacob George.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Metabolic syndrome

A cluster of risk factors that are associated with insulin resistance and future cardiovascular disease risk. According to the Adult Treatment Panel-III, metabolic syndrome is defined as the presence of abnormalities in at least three of the five components: elevated fasting glucose, high blood pressure, hypertriglyceridaemia, low HDL cholesterol level and elevated waist circumference.

Heritability

A statistical analysis that estimates the proportion of trait variation that is attributable to genetic variation among individuals. Heritability varies according to the studied population.

Genome-wide association study

(GWAS). An examination of a large number (hundreds of thousands) of common single-nucleotide polymorphisms across the genome of many cases and controls of a particular trait to determine whether any variant is associated with the trait.

Lipoproteins

Lipoproteins are complex particles with a core containing cholesterol esters and triglycerides surrounded by a lipid membrane; they contain proteins called apolipoproteins, which enable lipoprotein formation and function.

Lipogenesis

The metabolic process of synthesizing fatty acids from acetyl-CoA subunits for storage as fat.

Lands cycle

A metabolic remodelling pathway in the endoplasmic reticulum. The cycle is one of the major routes for acyl remodelling to modify the fatty acid composition of phospholipids.

Phenome-wide association studies

(PheWAS). An unbiased systematic approach to test for associations between a specific genetic variant or series of variants, and a wide range of phenotypes in large cohorts.

Gene effects

The estimation of the genetic determination for a particular trait using mathematical models that allows one to distinguish between environmental and genetic contributions.

HOMA-IR

Homeostatic Model Assessment of Insulin Resistance, a surrogate measure of insulin resistance.

Mendelian randomization studies

An analysis that incorporates genetic variants that are predicted to be independent of confounding factors into epidemiological studies as instrumental tools to infer causality of a risk factor or of a biomarker in a particular disease.

Phenomics

The systematic study of phenomes, a set of various phenotypes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslam, M., George, J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol 17, 40–52 (2020). https://doi.org/10.1038/s41575-019-0212-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0212-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing