Skip to main content
Log in

The application of artificial neural networks in metabolomics: a historical perspective

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Metabolomics data, with its complex covariance structure, is typically modelled by projection-based machine learning (ML) methods such as partial least squares (PLS) regression, which project data into a latent structure. Biological data are often non-linear, so it is reasonable to hypothesize that metabolomics data may also have a non-linear latent structure, which in turn would be best modelled using non-linear equations. A non-linear ML method with a similar projection equation structure to PLS is artificial neural networks (ANNs). While ANNs were first applied to metabolic profiling data in the 1990s, the lack of community acceptance combined with limitations in computational capacity and the lack of volume of data for robust non-linear model optimisation inhibited their widespread use. Due to recent advances in computational power, modelling improvements, community acceptance, and the more demanding needs for data science, ANNs have made a recent resurgence in interest across research communities, including a small yet growing usage in metabolomics. As metabolomics experiments become more complex and start to be integrated with other omics data, there is potential for ANNs to become a viable alternative to linear projection methods.

Aim of review

We aim to first describe ANNs and their structural equivalence to linear projection-based methods, including PLS regression. We then review the historical, current, and future uses of ANNs in the field of metabolomics.

Key scientific concept of review

Is metabolomics ready for the return of artificial neural networks?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160.

    Google Scholar 

  • AlaKorpela, M., Changani, K. K., Hiltunen, Y., Bell, J. D., Fuller, B. J., Bryant, D. J., et al. (1997). Assessment of quantitative artificial neural network analysis in a metabolically dynamic ex vivo P-31 NMR pig liver study. Magnetic Resonance in Medicine, 38, 840–844.

    CAS  Google Scholar 

  • Alakwaa, F. M., Chaudhary, K., & Garmire, L. X. (2018). Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. Journal of Proteome Research, 17, 337–347.

    CAS  PubMed  Google Scholar 

  • Aliakbarzadeh, G., Sereshti, H., & Parastar, H. (2016). Pattern recognition analysis of chromatographic fingerprints of Crocus sativus L. secondary metabolites towards source identification and quality control. Analytical and Bioanalytical Chemistry, 408, 3295–3307.

    CAS  PubMed  Google Scholar 

  • Allen, F., Pon, A., Greiner, R., & Wishart, D. (2016). Computational prediction of electron ionization mass spectra to assist in GC/MS compound identification. Analytical Chemistry, 88, 7689–7697.

    CAS  PubMed  Google Scholar 

  • Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., et al. (2018). The history began from AlexNet: A comprehensive survey on deep learning approaches. arXiv:1803.01164.

  • Anthony, M. L., Rose, V. S., Nicholson, J. K., & Lindon, J. C. (1995). Classification of toxin-induced changes in 1H NMR spectra of urine using an artificial neural network. Journal of Pharmaceutical and Biomedical Analysis, 13, 205–211.

    CAS  PubMed  Google Scholar 

  • Asakura, T., Date, Y., & Kikuchi, J. (2018). Application of ensemble deep neural network to metabolomics studies. Analytica Chimica Acta, 1037, 230–236.

    CAS  PubMed  Google Scholar 

  • Azmi, J., Griffin, J. L., Antti, H., Shore, R. F., Johansson, E., Nicholson, J. K., et al. (2002). Metabolic trajectory characterisation of xenobiotic-induced hepatotoxic lesions using statistical batch processing of NMR data. Analyst, 127, 271–276.

    CAS  PubMed  Google Scholar 

  • Banerjee, P., Barman, S. R., Sikdar, D., Roy, U., Mukhopadhayay, A., & Das, P. (2017). Enhanced degradation of ternary dye effluent by developed bacterial consortium with RSM optimization, ANN modeling and toxicity evaluation. Desalination and Water Treatment, 72, 249–265.

    CAS  Google Scholar 

  • Barnette, D. A., Davis, M. A., Dang, N. L., Pidugu, A. S., Hughes, T., Swamidass, S. J., et al. (2018). Lamisil (terbinafine) toxicity: Determining pathways to bioactivation through computational and experimental approaches. Biochemical Pharmacology, 156, 10–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43, 3–31.

    CAS  PubMed  Google Scholar 

  • Beger, R. D., Dunn, W. B., Bandukwala, A., Bethan, B., Broadhurst, D., Clish, C. B., et al. (2019). Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics, 15, 4.

    PubMed  PubMed Central  Google Scholar 

  • Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3, 1137–1155.

    Google Scholar 

  • Bica, I., Velickovic, P., Xiao, H., & Li, P. (2018). Multi-omics data integration using cross-modal neural networks. In European symposium on artificial neural networks, computational intelligence and machine learning (pp. 385–390).

  • Bostrom, N., & Yudkowsky, E. (2014). Chapter 15—The ethics of artificial intelligence. The Cambridge handbook of artificial intelligence. Cambridge: Cambridge University Press.

    Google Scholar 

  • Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16, 199–231.

    Google Scholar 

  • Broadhurst, D. (2019). Is metabolomics ready for the return of artificial neural networks? Retrieved August 25, 2019, from https://doi.org/10.6084/m9.figshare.8326529.v1

  • Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R., et al. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14, 72.

    PubMed  PubMed Central  Google Scholar 

  • Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.

    CAS  Google Scholar 

  • Cambria, E., & White, B. (2014). Jumping NLP curves: A review of natural language processing research. IEEE Computational Intelligence Magazine, 9, 48–57.

    Google Scholar 

  • Cavill, R., Jennen, D., Kleinjans, J., & Briede, J. J. (2016). Transcriptomic and metabolomic data integration. Briefings in Bioinformatics, 17, 891–901.

    PubMed  Google Scholar 

  • Chagas-Paula, D. A., Oliveira, T. B., Zhang, T., Edrada-Ebel, R., & Da Costa, F. B. (2015). Prediction of anti-inflammatory plants and discovery of their biomarkers by machine learning algorithms and metabolomic studies. Planta Medica, 81, 450–458.

    CAS  PubMed  Google Scholar 

  • Chaudhary, K., Poirion, O. B., Lu, L., & Garmire, L. X. (2018). Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clinical Cancer Research, 24, 1248–1259.

    CAS  PubMed  Google Scholar 

  • Chen, J. X. (2016). The evolution of computing: AlphaGo. Computing in Science & Engineering, 18, 4.

    Google Scholar 

  • Chollet, F. (2015). Keras. Retrieved August 27, 2019, from https://keras.io/

  • Chollet, F. (2018). Chapter 2: Before we begin: The mathematical building blocks of neural networks, deep learning with Python. New York: Manning Publications Co.

    Google Scholar 

  • Chung, N. C., Mirza, B., Choi, H., Wang, J., Wang, D., Ping, P., et al. (2019). Unsupervised classification of multi-omics data during cardiac remodeling using deep learning. Methods, 166, 66–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cireşan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012a). Deep neural networks segment neuronal membranes in electron microscopy images. In Proceedings of the 25th international conference on neural information processing systems (Vol. 1, pp. 2843–2851).

  • Cireşan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. Medical Image Computing and Computer-Assisted Intervention, 1, 411–418.

    Google Scholar 

  • Cireşan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2012b). Multi-column deep neural network for traffic sign classification. Neural Networks, 32, 333–338.

    PubMed  Google Scholar 

  • Cortina, P. R., Santiago, A. N., Sance, M. M., Peralta, I. E., Carrari, F., & Asis, R. (2018). Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits. Metabolomics, 14, 15.

    Google Scholar 

  • Date, Y., & Kikuchi, J. (2018). Application of a deep neural network to metabolomics studies and its performance in determining important variables. Analytical Chemistry, 90, 1805–1810.

    CAS  PubMed  Google Scholar 

  • Deelen, J., Kettunen, J., Fischer, K., van der Spek, A., Trompet, S., Kastenmüller, G., et al. (2019). A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nature Communications, 10, 3346.

    PubMed  PubMed Central  Google Scholar 

  • Dong, W. J., Zhao, J. P., Hu, R. S., Dong, Y. P., & Tan, L. H. (2017). Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chemistry, 229, 743–751.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B., Lin, W., Broadhurst, D., Begley, P., Brown, M., Zelena, E., et al. (2015). Molecular phenotyping of a UK population: Defining the human serum metabolome. Metabolomics, 11, 9–26.

    CAS  PubMed  Google Scholar 

  • Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural networks—A review. Pattern Recognition, 35, 2279–2301.

    Google Scholar 

  • Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: New computational modelling techniques for genomics. Nature Reviews Genetics, 20, 389–403.

    CAS  PubMed  Google Scholar 

  • Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69, 897–904.

    Google Scholar 

  • Falcini, F., Lami, G., & Costanza, A. M. (2017). Deep learning in automotive software. IEEE Software, 34, 56–63.

    Google Scholar 

  • Fatemi, M. H., Shahroudi, E. M., & Amini, Z. (2015). Development of quantitative interspecies toxicity relationship modeling of chemicals to fish. Journal of Theoretical Biology, 380, 16–23.

    CAS  PubMed  Google Scholar 

  • Fayolle, P., Picque, D., & Corrieu, G. (1997). Monitoring of fermentation processes producing lactic acid bacteria by mid-infrared spectroscopy. Vibrational Spectroscopy, 14, 247–252.

    CAS  Google Scholar 

  • Ferrucci, D. A. (2012). Introduction to “This Is Watson”. IBM Journal of Research and Development, 56, 235–249.

    Google Scholar 

  • Flagel, L., Brandvain, Y., & Schrider, D. R. (2018). The unreasonable effectiveness of convolutional neural networks in population genetic inference. Molecular Biology and Evolution, 36, 220–238.

    PubMed Central  Google Scholar 

  • Francescatto, M., Chierici, M., Rezvan Dezfooli, S., Zandonà, A., Jurman, G., & Furlanello, C. (2018). Multi-omics integration for neuroblastoma clinical endpoint prediction. Biology Direct, 13, 5.

    PubMed  PubMed Central  Google Scholar 

  • Frisvad, J. C. (1992). Chemometrics and chemotaxonomy: A comparison of multivariate statistical methods for the evaluation of binary fungal secondary metabolite data. Chemometrics and Intelligent Laboratory Systems, 14, 253–269.

    CAS  Google Scholar 

  • Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202.

    CAS  PubMed  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmospheric Environment, 32, 2627–2636.

    CAS  Google Scholar 

  • Garson, G. D. (1991). Interpreting neural network connection weights. AI Expert, 6, 47–51.

    Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1–17.

    CAS  Google Scholar 

  • Goodacre, R. (2003). Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. Vibrational Spectroscopy, 32, 33–45.

    CAS  Google Scholar 

  • Goodacre, R., & Kell, D. B. (1993). Rapid and quantitative analysis and bioprocesses using pyrolysis mass spectrometry and neural networks: Application to indole production. Analytica Chimica Acta, 279, 17–26.

    CAS  Google Scholar 

  • Goodacre, R., & Kell, D. B. (1996). Correction of mass spectral drift using artificial neural networks. Analytical Chemistry, 68, 271–280.

    CAS  PubMed  Google Scholar 

  • Goodacre, R., Kell, D. B., & Bianchi, G. (1992). Neural networks and olive oil. Nature, 359, 594.

    Google Scholar 

  • Goodacre, R., Kell, D. B., & Bianchi, G. (1993). Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and artificial neural networks. Journal of the Science of Food and Agriculture, 63, 297–307.

    CAS  Google Scholar 

  • Goodacre, R., Rischert, D. J., Evans, P. M., & Kell, D. B. (1996a). Rapid authentication of animal cell lines using pyrolysis mass spectrometry and auto-associative artificial neural networks. Cytotechnology, 21, 231–241.

    CAS  PubMed  Google Scholar 

  • Goodacre, R., Rooney, P. J., & Kell, D. B. (1998). Discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks. Journal of Antimicrobial Chemotherapy, 41, 27–34.

    CAS  Google Scholar 

  • Goodacre, R., Timmins, É. M., Jones, A., Kell, D. B., Maddock, J., Heginbothom, M. L., et al. (1997). On mass spectrometer instrument standardization and interlaboratory calibration transfer using neural networks. Analytica Chimica Acta, 348, 511–532.

    CAS  Google Scholar 

  • Goodacre, R., Timmins, E. M., Rooney, P. J., Rowland, J. J., & Kell, D. B. (1996b). Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiology Letters, 140, 233–239.

    CAS  PubMed  Google Scholar 

  • Goodacre, R., Trew, S., Wrigleyjones, C., Neal, M. J., Maddock, J., Ottley, T. W., et al. (1994). Rapid screening for metabolite overproduction in fermentor broths, using pyrolysis mass-spectrometry with multivariate calibration and artificial neural networks. Biotechnology and Bioengineering, 44, 1205–1216.

    CAS  PubMed  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Massachusetts, United States of America: MIT press.

    Google Scholar 

  • Grapov, D., Fahrmann, J., Wanichthanarak, K., & Khoomrung, S. (2018). Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine. Omics-a Journal of Integrative Biology, 22, 630–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., et al. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10–23.

    CAS  PubMed  Google Scholar 

  • Guo, J. R., Chen, Q. Q., Lam, C. W. K., Wang, C. Y., Wong, V. K. W., Xu, F. G., et al. (2015). Application of artificial neural network to investigate the effects of 5-fluorouracil on ribonucleotides and deoxyribonucleotides in HepG2 cells. Scientific Reports, 5, 14.

    Google Scholar 

  • Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.

    Google Scholar 

  • Hall, L. M., Hill, D. W., Bugden, K., Cawley, S., Hall, L. H., Chen, M. H., et al. (2018). Development of a reverse phase HPLC Retention Index Model for nontargeted metabolomics using synthetic compounds. Journal of Chemical Information and Modeling, 58, 591–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, L. M., Hill, D. W., Menikarachchi, L. C., Chen, M. H., Hall, L. H., & Grant, D. F. (2015). Optimizing artificial neural network models for metabolomics and systems biology: An example using HPLC retention index data. Bioanalysis, 7, 939–955.

    CAS  PubMed  Google Scholar 

  • Hamid, J. S., Hu, P., Roslin, N. M., Ling, V., Greenwood, C. M. T., & Beyene, J. (2009). Data integration in genetics and genomics: Methods and challenges. Human Genomics and Proteomics, 2009, 869093.

    PubMed  PubMed Central  Google Scholar 

  • Harthun, S., Matischak, K., & Friedl, P. (1998). Simultaneous prediction of human antithrombin III and main metabolites in animal cell culture processes by near-infrared spectroscopy. Biotechnology Techniques, 12, 393–397.

    CAS  Google Scholar 

  • Hettinga, K. A., de Bok, F. A. M., & Lam, T. (2015). Short communication: Practical issues in implementing volatile metabolite analysis for identifying mastitis pathogens. Journal of Dairy Science, 98, 7906–7910.

    CAS  PubMed  Google Scholar 

  • Holmes, E., Loo, R. L., Stamler, J., Bictash, M., Yap, I. K., Chan, Q., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453, 396–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain? arXiv:1712.09923.

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.

    Google Scholar 

  • Huang, T., Lan, L., Fang, X. X., An, P., Min, J. X., & Wang, F. D. (2015). Promises and challenges of big data computing in health sciences. Big Data Research, 2, 2–11.

    Google Scholar 

  • Huang, Z., Zhan, X., Xiang, S., Johnson, T. S., Helm, B., Yu, C. Y., et al. (2019). SALMON: Survival analysis learning with multi-omics neural networks on breast cancer. Frontiers in Genetics, 10, 166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, T. B., & Swamidass, S. J. (2017). Deep learning to predict the formation of quinone species in drug metabolism. Chemical Research in Toxicology, 30, 642–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inglese, P., McKenzie, J. S., Mroz, A., Kinross, J., Veselkov, K., Holmes, E., et al. (2017). Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer. Chemical Science, 8, 3500–3511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jolliffe, I. T. (1982). A note on the use of principal components in regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31, 300–303.

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Kaartinen, J., Mierisova, S., Oja, J. M. E., Usenius, J. P., Kauppinen, R. A., & Hiltunen, Y. (1998). Automated quantification of human brain metabolites by artificial neural network analysis from in vivo single-voxel H-1 NMR spectra. Journal of Magnetic Resonance, 134, 176–179.

    CAS  PubMed  Google Scholar 

  • Kendall, M. G. (1957). A course in multivariate analysis. New York: Hafner Publishing Company.

    Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th international conference on neural information processing systems (Vol. 1, pp. 1097–1105)

  • Lang, N. P., Butler, M. A., Massengill, J., Lawson, M., Stotts, R. C., Hauerjensen, M., et al. (1994). Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiology, Biomarkers and Prevention, 3, 675–682.

    CAS  PubMed  Google Scholar 

  • Lenz, I., Lee, H., & Saxena, A. (2015). Deep learning for detecting robotic grasps. The International Journal of Robotics Research, 34, 705–724.

    Google Scholar 

  • Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research, 37, 421–436.

    Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., Antti, H., Bollard, M. E., Keun, H., et al. (2003). Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicology and Applied Pharmacology, 187, 137–146.

    CAS  PubMed  Google Scholar 

  • Löfstedt, T., & Trygg, J. (2011). OnPLS—A novel multiblock method for the modelling of predictive and orthogonal variation. Journal of Chemometrics, 25, 441–455.

    Google Scholar 

  • Long, N. P., Lim, D. K., Mo, C., Kim, G., & Kwon, S. W. (2017). Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice. Scientific Reports, 7, 10.

    Google Scholar 

  • Luckow, A., Cook, M., Ashcraft, N., Weill, E., Djerekarov, E., & Vorster, B. (2016). Deep learning in the automotive industry: Applications and tools. IEEE International Conference on Big Data, 1, 3759–3768.

    Google Scholar 

  • Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: System demonstrations (Vol. 1, pp. 55–60).

  • Maudsley, S., Devanarayan, V., Martin, B., Geerts, H., & Brain Health Modeling Initiative. (2018). Intelligent and effective informatic deconvolution of “Big Data” and its future impact on the quantitative nature of neurodegenerative disease therapy. Alzheimers & Dementia, 14, 961–975.

    Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115–133.

    Google Scholar 

  • Moen, B. E., Nilsson, R., Nordlinder, R., Ovrebo, S., Bleie, K., Skorve, A. H., et al. (1996). Assessment of exposure to polycyclic aromatic hydrocarbons in engine rooms by measurement of urinary 1-hydroxypyrene. Occupational and Environmental Medicine, 53, 692–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, G. E. (1975). Progress in digital integrated electronics. Electron Devices Meeting, 21, 11–13.

    Google Scholar 

  • Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. International Conference on Artificial Intelligence and Statistics, 5, 246–252.

    Google Scholar 

  • Mosconi, F., Julou, T., Desprat, N., Sinha, D. K., Allemand, J.-F., Croquette, V., et al. (2008). Some nonlinear challenges in biology. Nonlinearity, 21, 131–147.

    Google Scholar 

  • Oh, K.-S., & Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition, 37, 1311–1314.

    Google Scholar 

  • Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154, 135–150.

    Google Scholar 

  • Olden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178, 389–397.

    Google Scholar 

  • Ou, X. Q., Li, H., Yang, X. M., Tan, M. L., Ao, H., & Wang, J. (2015). Artificial neural network analysis of Xinhui pericarpium citri reticulatae using gas chromatography—Mass spectrometer—Automated mass spectral deconvolution and identification system. Tropical Journal of Pharmaceutical Research, 14, 2071–2075.

    CAS  Google Scholar 

  • Pecnik, K., Todorovic, V., Bosnjak, M., Cemazar, M., Kononenko, I., Sersa, G., et al. (2018). The general explanation method with NMR spectroscopy enables the identification of metabolite profiles specific for normal and tumor cell lines. ChemBioChem, 19, 2066–2071.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Enciso, M., & Tenenhaus, M. (2003). Prediction of clinical outcome with microarray data: A partial least squares discriminant analysis (PLS-DA) approach. Human Genetics, 112, 581–592.

    PubMed  Google Scholar 

  • Peters, W., Gang, E. S., Okazaki, H., Solingen, S., Kobayashi, Y., Karagueuzian, H. S., et al. (1991). Acute effects of intravenous propafenone on the internal ventricular defibrillation threshold in the anesthetized dog. American Heart Journal, 122, 1355–1360.

    CAS  PubMed  Google Scholar 

  • Pinu, R. F., Beale, J. D., Paten, M. A., Kouremenos, K., Swarup, S., Schirra, J. H., et al. (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9, 76.

    CAS  PubMed Central  Google Scholar 

  • Qiu, S., Yang, W. Z., Yao, C. L., Qiu, Z. D., Shi, X. J., Zhang, J. X., et al. (2016). Nontargeted metabolomic analysis and “commercial-homophyletic” comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng. Journal of Chromatography A, 1453, 78–87.

    CAS  PubMed  Google Scholar 

  • Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29, 2352–2449.

    PubMed  Google Scholar 

  • Reinke, S. N., Galindo-Prieto, B., Skotare, T., Broadhurst, D. I., Singhania, A., Horowitz, D., et al. (2018). OnPLS-based multi-block data integration: A multivariate approach to interrogating biological interactions in asthma. Analytical Chemistry, 90, 13400–13408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Risum, A. B., & Bro, R. (2019). Using deep learning to evaluate peaks in chromatographic data. Talanta, 204, 255–260.

    CAS  PubMed  Google Scholar 

  • Robinson, D. A. (1992). Implications of neural networks for how we think about brain function. Behavioral and Brain Sciences, 15, 644–655.

    Google Scholar 

  • Rohart, F., Gautier, B., Singh, A., & Lê Cao, K.-A. (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Computational Biology, 13, e1005752.

    PubMed  PubMed Central  Google Scholar 

  • Roundtable on Translating Genomic-Based Research for Health, Board on Health Sciences Policy, Health and Medicine Division and National Academies of Sciences, E., and Medicine. (2016). F, Large Genetic Cohort Studies: A Background in Siobhan, A., Steve, O. and Sarah, H.B. (Eds), Applying an implementation science approach to genomic medicine: Workshop summary. Washington, DC: The National Academies Press

  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211–252.

    Google Scholar 

  • Russell, S., Hauert, S., Altman, R., & Veloso, M. (2015). Ethics of artificial intelligence. Nature, 521, 415–416.

    PubMed  Google Scholar 

  • Samaraweera, M. A., Hall, L. M., Hill, D. W., & Grant, D. F. (2018). Evaluation of an artificial neural network retention index model for chemical structure identification in nontargeted metabolomics. Analytical Chemistry, 90, 12752–12760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Muller, K.-R. (Eds.). (2019). Explainable AI: Interpreting, explaining and visualizing deep learning. Basel: Springer International Publishing.

    Google Scholar 

  • Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv:1708.08296.

  • Saunders, G., Baudis, M., Becker, R., Beltran, S., Béroud, C., Birney, E., et al. (2019) Leveraging European infrastructures to access 1 million human genomes by 2022. Nature Reviews Genetics 1–9.

  • Schalkoff, R. J. (1997). Artificial neural networks, (International ed.). London: McGraw-Hill.

    Google Scholar 

  • Schmidhuber, J. (2012) Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3642–3649).

  • Seber, G. A. F. (2004). Multivariate observations (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  • Sharifi-Noghabi, H., Zolotareva, O., Collins, C. C., & Ester, M. (2019). MOLI: Multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics, 35, i501–i509.

    PubMed  PubMed Central  Google Scholar 

  • Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural networks applied to visual document analysis. International Conference on Document Analysis and Recognition, 3, 1–6.

    Google Scholar 

  • Sjogren, M., Ehrenberg, L., & Rannug, U. (1996). Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 358, 97–112.

    CAS  PubMed  Google Scholar 

  • Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84, 5035–5039.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trainor, P. J., DeFilippis, A. P., & Rai, S. N. (2017). Evaluation of classifier performance for multiclass phenotype discrimination in untargeted metabolomics. Metabolites, 7, 20.

    Google Scholar 

  • Trivedi, D. K., Hollywood, K. A., & Goodacre, R. (2017). Metabolomics for the masses: The future of metabolomics in a personalized world. New Horizons in Translational Medicine, 3, 294–305.

    PubMed  PubMed Central  Google Scholar 

  • Usenius, J. P., Tuohimetsa, S., Vainio, P., AlaKorpela, M., Hiltunen, Y., & Kauppinen, R. A. (1996). Automated classification of human brain tumours by neural network analysis using in vivo H-1 magnetic resonance spectroscopic metabolite phenotypes. NeuroReport, 7, 1597–1600.

    CAS  PubMed  Google Scholar 

  • Wang, F., Wang, B., Wang, L., Xiong, Z. Y., Gao, W., Li, P., et al. (2017). Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study. Journal of Pharmaceutical and Biomedical Analysis, 138, 70–79.

    CAS  PubMed  Google Scholar 

  • Wang, F.-Y., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y., Dai, X., et al. (2016). Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 3, 113–120.

    CAS  Google Scholar 

  • Wold, H. (1975). Path models with latent variables: The NIPALS approach. Quantitative sociology (pp. 307–357). New York: Elsevier.

    Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

    CAS  Google Scholar 

  • Wold, S., Johansson, E., & Cocchi, M. (1993). PLS: Partial least squares projections to latent structures, 3D QSAR in drug design: Theory methods and applications. Dordrecht: Kluwer/Escom.

    Google Scholar 

  • Woldegebriel, M., & Derks, E. (2017). Artificial neural network for probabilistic feature recognition in liquid chromatography coupled to high-resolution mass spectrometry. Analytical Chemistry, 89, 1212–1221.

    CAS  PubMed  Google Scholar 

  • Wolff, M. S., Toniolo, P. G., Lee, E. W., Rivera, M., & Dubin, N. (1993). Blood levels of organochlorine residues and risk of breast cancer. Journal of the National Cancer Institute, 85, 648–652.

    CAS  PubMed  Google Scholar 

  • Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current metabolomics, 1, 92–107.

    CAS  PubMed  Google Scholar 

  • Wu, T., Liu, S., Zhang, J., & Xiang, Y. (2017). Twitter spam detection based on deep learning. Proceedings of the Australasian Computer Science Week Multiconference, 1, 3.

    Google Scholar 

  • Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine, 13, 55–75.

    Google Scholar 

  • Yue, T., & Wang, H. (2018) Deep learning for genomics: A concise overview. arXiv:1802.00810.

  • Zhang, Z., Beck, M. W., Winkler, D. A., Huang, B., Sibanda, W., Goyal, H., et al. (2018). Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Annals of Translational Medicine, 6, 216.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, X. X., Li, Y. Z., Liang, Y., Sun, P. T., Wu, X., Song, J. H., et al. (2017). Distinguishing Intracerebral Hemorrhage from Acute Cerebral Infarction through Metabolomics. Revista de Investigación Clínica - Clinical and Translational Investigation, 69, 319–328.

    CAS  Google Scholar 

  • Zhang, Q.-S., & Zhu, S.-C. (2018). Visual interpretability for deep learning: A survey. Frontiers of Information Technology & Electronic Engineering, 19, 27–39.

    Google Scholar 

  • Zhao, X. Y., Qin, W. J., & Qian, X. H. (2018). Application of deep learning in biological mass spectrometry and proteomics. Progress in Biochemistry and Biophysics, 45, 1214–1223.

    Google Scholar 

  • Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., et al. (2018). DRN: A deep reinforcement learning framework for news recommendation. Proceedings of the 2018 World Wide Web Conference on World Wide Web, 1, 167–176.

    Google Scholar 

  • Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., & Telenti, A. (2019). A primer on deep learning in genomics. Nature Genetics, 51, 12–18.

    CAS  PubMed  Google Scholar 

  • Zurada, J. M. (1992). Introduction to artificial neural systems. Minnesota: West Publishing Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived of the idea. KMM wrote the manuscript. DIB and SNR edited the manuscript.

Corresponding authors

Correspondence to David I. Broadhurst or Stacey N. Reinke.

Ethics declarations

Conflicts of interest

The authors have no disclosures of potential conflicts of interest related to the presented work.

Research involving human or animal rights

No research involving human or animal participants was performed in the construction of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendez, K.M., Broadhurst, D.I. & Reinke, S.N. The application of artificial neural networks in metabolomics: a historical perspective. Metabolomics 15, 142 (2019). https://doi.org/10.1007/s11306-019-1608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1608-0

Keywords

Navigation