Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacogenetic interactions in amyotrophic lateral sclerosis: a step closer to a cure?

Abstract

Genetic mutations related to amyotrophic lateral sclerosis (ALS) act through distinct pathophysiological pathways, which may lead to varying treatment responses. Here we assess the genetic interaction between C9orf72, UNC13A, and MOBP with creatine and valproic acid treatment in two clinical trials. Genotypic data was available for 309 of the 338 participants (91.4%). The UNC13A genotype affected mortality (p = 0.012), whereas C9orf72 repeat-expansion carriers exhibited a faster rate of decline in overall (p = 0.051) and bulbar functioning (p = 0.005). A dose-response pharmacogenetic interaction was identified between creatine and the A allele of the MOBP genotype (p = 0.027), suggesting a qualitative interaction in a recessive model (HR 3.96, p = 0.015). Not taking genetic information into account may mask evidence of response to treatment or be an unrecognized source of bias. Incorporating genetic data could help investigators to identify critical treatment clues in patients with ALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390:2084–98.

    Article  Google Scholar 

  2. van Eijk RPA, Jones AR, Sproviero W, Shatunov A, Shaw PJ, Leigh PN, et al. Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology. 2017;89:1915–22.

    Article  Google Scholar 

  3. Scott A. Drug therapy: on the treatment trail for ALS. Nature. 2017;550:S120–S121.

    Article  CAS  Google Scholar 

  4. Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. 2014;13:1127–38.

    Article  Google Scholar 

  5. Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z. Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve. 2014;49:786–803.

    Article  CAS  Google Scholar 

  6. Broglio K. Randomization in clinical trials: permuted blocks and stratification. JAMA. 2018;319:2223–4.

    Article  Google Scholar 

  7. Friedman LM, Furberg C, DeMets DL. Fundamentals of clinical trials, 4th edn. New York:Springer; 2010, xviii, p. 445.

  8. Wang SJ, O'Neill RT, Hung HJ. Statistical considerations in evaluating pharmacogenomics-based clinical effect for confirmatory trials. Clin Trials. 2010;7:525–36.

    Article  Google Scholar 

  9. Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12:435–42.

    Article  CAS  Google Scholar 

  10. Lange DJ, Andersen PM, Remanan R, Marklund S, Benjamin D. Pyrimethamine decreases levels of SOD1 in leukocytes and cerebrospinal fluid of ALS patients: a phase I pilot study. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:199–204.

    Article  CAS  Google Scholar 

  11. Benatar M, Wuu J, Andersen PM, Atassi N, David W, Cudkowicz M, et al. Randomized, double-blind, placebo-controlled trial of arimoclomol in rapidly progressive SOD1 ALS. Neurology. 2018;90:e565–e574.

    Article  CAS  Google Scholar 

  12. Groeneveld GJ, Veldink JH, van der Tweel I, Kalmijn S, Beijer C, de Visser M, et al. A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol. 2003;53:437–45.

    Article  CAS  Google Scholar 

  13. Piepers S, Veldink JH, de Jong SW, van der Tweel I, van der Pol WL, Uijtendaal EV, et al. Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis. Ann Neurol. 2009;66:227–34.

    Article  CAS  Google Scholar 

  14. Cui L, Hung HM, Wang SJ, Tsong Y. Issues related to subgroup analysis in clinical trials. J Biopharm Stat. 2002;12:347–58.

    Article  Google Scholar 

  15. van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet. 2009;41:1083–7.

    Article  Google Scholar 

  16. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

    Article  CAS  Google Scholar 

  17. van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL, et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet. 2016;48:1043–8.

    Article  Google Scholar 

  18. van Es MA, Dahlberg C, Birve A, Veldink JH, van den Berg LH, Andersen PM. Large-scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2010;81:562–6.

    Article  Google Scholar 

  19. Akimoto C, Volk AE, van Blitterswijk M, Van den Broeck M, Leblond CS, Lumbroso S, et al. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med Genet. 2014;51:419–24.

    Article  CAS  Google Scholar 

  20. Cooper-Knock J, Hewitt C, Highley JR, Brockington A, Milano A, Man S, et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain. 2012;135:751–64.

    Article  Google Scholar 

  21. Van EsMA, Van Vught PW, Veldink JH, Andersen PM, Birve A, Lemmens R, et al. Analysis of FGGY as a risk factor for sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:441–7.

    Article  Google Scholar 

  22. Kahan BC, Jairath V, Dore CJ, Morris TP. The risks and rewards of covariate adjustment in randomized trials: an assessment of 12 outcomes from 8 studies. Trials. 2014;15:139.

    Article  Google Scholar 

  23. Westeneng HJ, Debray TPA, Visser AE, van Eijk RPA, Rooney JPK, Calvo A, et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol. 2018;17:423–33.

    Article  Google Scholar 

  24. Poulson RS, Gadbury GL, Allison DB. Treatment heterogeneity and individual qualitative interaction. Am Stat. 2012;66:16–24.

    Article  Google Scholar 

  25. Chio A, Borghero G, Restagno G, Mora G, Drepper C, Traynor BJ, et al. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain. 2012;135:784–93.

    Article  Google Scholar 

  26. Brown RH Jr., Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med. 2017;377:1602.

    Article  Google Scholar 

  27. van Eijk RPA, Eijkemans MJC, Ferguson TA, Nikolakopoulos S, Veldink JH, van den Berg LH. Monitoring disease progression with plasma creatinine in amyotrophic lateral sclerosis clinical trials. J Neurol, Neurosurg, psychiatry. 2018;89:156–61.

    Article  Google Scholar 

  28. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.

    Article  CAS  Google Scholar 

  29. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    Article  CAS  Google Scholar 

  30. Wen X, Westergard T, Pasinelli P, Trotti D. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Neurosci Lett. 2017;636:16–26.

    Article  CAS  Google Scholar 

  31. Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 2004;27:723–49.

    Article  CAS  Google Scholar 

  32. Vance C, Scotter EL, Nishimura AL, Troakes C, Mitchell JC, Kathe C, et al. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet. 2013;22:2676–88.

    Article  CAS  Google Scholar 

  33. Montague P, McCallion AS, Davies RW, Griffiths IR. Myelin-associated oligodendrocytic basic protein: a family of abundant CNS myelin proteins in search of a function. Dev Neurosci. 2006;28:479–87.

    Article  CAS  Google Scholar 

  34. van der Baan FH, Knol MJ, Klungel OH, Egberts AC, Grobbee DE, Roes KC. Potential of adaptive clinical trial designs in pharmacogenetic research. Pharmacogenomics. 2012;13:571–8.

    Article  Google Scholar 

  35. van Eijk RPA, Nikolakopoulos S, Ferguson TA, Liu D, Eijkemans MJC, van den Berg LH. Increasing the efficiency of clinical trials in neurodegenerative disorders using group sequential trial designs. J Clin Epidemiol. 2018;98:80–8.

    Article  Google Scholar 

  36. Wang SJ. Utility of adaptive strategy and adaptive design for biomarker-facilitated patient selection in pharmacogenomic or pharmacogenetic clinical development program. J Formos Med Assoc. 2008;107:19–27.

    Article  Google Scholar 

  37. Chio A, Traynor BJ, Lombardo F, Fimognari M, Calvo A, Ghiglione P, et al. Prevalence of SOD1 mutations in the Italian ALS population. Neurology. 2008;70:533–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Netherlands ALS Foundation funded this study (grant: Project TryMe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. van Es.

Ethics declarations

Conflict of interest

RPAvE, SN, MDJ, H-JW, KRvE, RAAvdS, JJFAvV, SP, G-JG, JHV, MJCE report no disclosures. MAvE received grants from the Netherlands Organization for Health Research and Development (Veni scheme), The Thierry Latran foundation and the Netherlands ALS foundation (Stichting ALS Nederland), the EU Joint Programme—Neurodegenerative Disease Research (JPND). LHvdB reports grants from Netherlands ALS Foundation, the Netherlands Organization for Health Research and Development (Vici scheme), the Netherlands Organization for Health Research and Development (SOPHIA, STRENGTH, ALS-CarE project), funded through the EU Joint Programme—Neurodegenerative Disease Research, JPND), served on the Scientific Advisory Board of Biogen, Cytokinetics, Prinses Beatrix SpierFonds, and the Latran Foundation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Eijk, R.P.A., Eijkemans, M.J.C., Nikolakopoulos, S. et al. Pharmacogenetic interactions in amyotrophic lateral sclerosis: a step closer to a cure?. Pharmacogenomics J 20, 220–226 (2020). https://doi.org/10.1038/s41397-019-0111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0111-3

This article is cited by

Search

Quick links