Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Determining random lasing action

Abstract

Random lasing — for which disorder is exploited to enhance stimulated emission — has emerged as a paradigmatic phenomenon of complex lasers. Random lasers feature unique properties such as tunable coherence and reconfigurable spectral emission. Nevertheless, their complexity sets them apart from conventional lasers, making it challenging to determine whether random lasing is occurring. In this Expert Recommendation, I discuss experimental methods required to properly assess and demonstrate random lasing action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional versus random lasing.

Similar content being viewed by others

References

  1. Maiman, T. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article  ADS  Google Scholar 

  2. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognise lasing. Nat. Photonics 3, 546–549 (2009).

    ADS  Google Scholar 

  3. Cao, H. Review on latest developments in random lasers with coherent feedback. J. Phys. A Math. Gen. 38, 10497 (2005).

    ADS  MathSciNet  Google Scholar 

  4. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    ADS  Google Scholar 

  5. Letokhov, V. S. Quantum statistics of multi-mode radiation from an ensemble of atoms. Sov. Phys. JETP 26, 1246–1251 (1968).

    ADS  Google Scholar 

  6. Luan, F. et al. Lasing in nanocomposite random media. Nano Today 10, 168–192 (2015).

    Google Scholar 

  7. Wiersma, D. S. & Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 54, 4256–4265 (1996).

    ADS  Google Scholar 

  8. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    ADS  Google Scholar 

  9. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    ADS  Google Scholar 

  10. Caixeiro, S., Gaio, M., Marelli, B., Omenetto, F. G. & Sapienza, R. Silk-based biocompatible random lasing. Adv. Opt. Mat. 4, 998–1003 (2016).

    Google Scholar 

  11. Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photonics 9, 572–576 (2015).

    ADS  Google Scholar 

  12. Schubert, M. et al. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15, 5647–5652 (2015).

    ADS  Google Scholar 

  13. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS  Google Scholar 

  14. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  15. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    ADS  Google Scholar 

  16. Andreasen, J. et al. Modes of random lasers. Adv. Opt. Photonics 3, 88–127 (2011).

    ADS  Google Scholar 

  17. van der Molen, K. L., Mosk, A. P. & Lagendijk, A. Quantitative analysis of several random lasers. Opt. Commun. 278, 110–113 (2007).

    ADS  Google Scholar 

  18. Reeves, L., Wang, Y. & Krauss, T. F. 2D material microcavity light emitters: to lase or not to lase? Adv. Opt. Mater. 6, 1800272 (2018).

    Google Scholar 

  19. Glauber, R. J. Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963).

    ADS  MathSciNet  Google Scholar 

  20. Grynberg, G., Aspect, A., Fabre, C. & Cohen-Tannoudji, C. Complement 3C: Laser Light and Incoherent Light: Energy Density and Number of Photons per Mode 247–256 (Cambridge Univ. Press, 2010).

  21. [No authors listed] Scrutinizing lasers. Nat. Photonics 11, 139 (2017).

  22. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008).

    Google Scholar 

  23. Gaio, M. et al. A nanophotonic laser on a graph. Nat. Commun. 10, 226 (2019).

    ADS  Google Scholar 

  24. Liu, J. et al. Random nanolasing in the Anderson localized regime. Nat. Nanotechnol. 9, 285–289 (2014).

    ADS  Google Scholar 

  25. Gottardo, S. et al. Resonance-driven random lasing. Nat. Photonics 2, 429–432 (2008).

    Google Scholar 

  26. Mujumdar, S., Ricci, M., Torre, R. & Wiersma, D. S. Amplified extended modes in random lasers. Phys. Rev. Lett. 93, 053903 (2004).

    ADS  Google Scholar 

  27. Ling, Y. et al. Investigation of random lasers with resonant feedback. Phys. Rev. A 64, 063808 (2001).

    ADS  Google Scholar 

  28. Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    ADS  Google Scholar 

  29. Fallert, J. et al. Co-existence of strongly and weakly localized random laser modes. Nat. Photonics 3, 279–282 (2009).

    ADS  Google Scholar 

  30. Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nat. Phys. 4, 794–798 (2008).

    Google Scholar 

  31. Gaio, M., Peruzzo, M. & Sapienza, R. Tuning random lasing in photonic glasses. Opt. Lett. 40, 1611–1614 (2015).

    ADS  Google Scholar 

  32. Chow, W. W., Jahnke, F. & Gies, C. Emission properties of nanolasers during the transition to lasing. Light Sci. Appl. 3, e201 (2014).

    ADS  Google Scholar 

  33. Kreinberg, S. et al. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light Sci. Appl. 6, e17030 (2017).

    Google Scholar 

  34. Cao, H., Ling, Y., Xu, J. Y., Cao, C. Q. & Kumar, P. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett. 86, 4524–4527 (2001).

    ADS  Google Scholar 

  35. Papadakis, V. M. et al. Single-shot temporal coherence measurements of random lasing media. J. Opt. Soc. Am. B 24, 31–36 (2007).

    ADS  Google Scholar 

  36. Zacharakis, G., Papadogiannis, N. A., Filippidis, G. & Papazoglou, T. G. Photon statistics of laser like emission from polymeric scattering gain media. Opt. Lett. 25, 923–925 (2000).

    ADS  Google Scholar 

  37. Burgess, T. et al. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat. Commun. 7, 11927 (2016).

    ADS  Google Scholar 

  38. Marell, M. J. H. et al. Plasmonic distributed feedback lasers at telecommunications wavelengths. Opt. Express 19, 15109–15118 (2011).

    ADS  Google Scholar 

  39. Baudouin, Q., Mercadier, N., Guarrera, V., Guerin, W. & Kaiser, R. A cold-atom random laser. Nat. Phys. 9, 357–360 (2013).

    Google Scholar 

  40. García-Revilla, S. et al. Coherence characteristics of random lasing in a dye doped hybrid powder. J. Lumin. 169, 472–477 (2016).

    Google Scholar 

  41. Noginov, M. A., Egarievwe, S. U., Noginova, N., Caulfield, H. J. & Wang, J. C. Interferometric studies of coherence in a powder laser. Opt. Mater. 12, 127–134 (1999).

    ADS  Google Scholar 

  42. Redding, B., Choma, M. A. & Cao, H. Spatial coherence of random laser emission. Opt. Lett. 36, 3404–3406 (2011).

    ADS  Google Scholar 

  43. Ismail, W. Z. W. et al. Spectral and coherence signatures of threshold in random lasers. J. Opt. 16, 105008 (2014).

    ADS  Google Scholar 

  44. Wiseman, H. M. How many principles does it take to change a light bulb…into a laser? Phys. Scr. 91, 033001 (2016).

    ADS  Google Scholar 

  45. Bachelard, N., Gigan, S., Noblin, X. & Sebbah, P. Adaptive pumping for spectral control of random lasers. Nat. Phys. 10, 426–431 (2014).

    Google Scholar 

  46. Leonetti, M., Conti, C. & Lopez, C. The mode-locking transition of random lasers. Nat. Photonics 5, 615–617 (2011).

    ADS  Google Scholar 

  47. Saxena, D. et al. Mode profiling of semiconductor nanowire lasers. Nano Lett. 15, 5342–5348 (2015).

    ADS  Google Scholar 

  48. Kumar, R., Balasubrahmaniyam, M., Alee, K. S. & Mujumdar, S. Temporal complexity in emission from Anderson localized lasers. Phys. Rev. A 96, 063816 (2017).

    ADS  Google Scholar 

  49. Siddique, M., Alfano, R. R., Berger, G. A., Kempe, M. & Genack, A. Z. Time-resolved studies of stimulated emission from colloidal dye solutions. Opt. Lett. 21, 450–452 (1996).

    ADS  Google Scholar 

  50. Soukoulis, C. M., Jiang, X., Xu, J. Y. & Cao, H. Dynamic response and relaxation oscillations in random lasers. Phys. Rev. B 65, 041103(R) (2002).

    ADS  Google Scholar 

  51. van der Molen, K. L., Mosk, A. P. & Lagendijk, Ad Relaxation oscillations in long-pulsed random lasers. Phys. Rev. A 80, 055803 (2009).

    ADS  Google Scholar 

  52. García-Revilla, S. et al. Diffusive random laser modes under a spatiotemporal scope. Opt. Exp. 23, 1456–1469 (2015).

    ADS  Google Scholar 

  53. Zhu, G., Gu, L. & Noginov, M. A. Experimental study of instability in a random laser with immobile scatterers. Phys. Rev. A 85, 043801 (2012).

    ADS  Google Scholar 

  54. Ghofraniha, N. et al. Experimental evidence of replica symmetry breaking in random lasers. Nat. Commun. 6, 6058 (2015).

    ADS  Google Scholar 

  55. Uppu, R. & Mujumdar, S. Lévy exponents as universal identifiers of threshold and criticality in random lasers. Phys. Rev. A 90, 025801 (2014).

    ADS  Google Scholar 

  56. Cao, H., Chriki, R., Bittner, S., Friesem, A. A. & Davidson, N. Complex lasers with controllable coherence. Nat. Rev. Phys. 1, 156–168 (2019).

    Google Scholar 

  57. Bachelard, N., Andreasen, J., Gigan, S. & Sebbah, P. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, 033903 (2012).

    ADS  Google Scholar 

  58. Genack, A. Z. & Drake, J. M. Scattering for super-radiation. Nature 368, 400–401 (1994).

    ADS  Google Scholar 

  59. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).

Download references

Acknowledgements

The author thanks S. Caixeiro, S. Mujumdar and D. Saxena for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Sapienza.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Physics thanks D. Wiersma and the other, anonymous, reviewer(s) for their contribution to the peer-review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapienza, R. Determining random lasing action. Nat Rev Phys 1, 690–695 (2019). https://doi.org/10.1038/s42254-019-0113-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0113-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing