Skip to main content
Log in

Active sites in CO2 hydrogenation over confined VOx-Rh catalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal oxide-promoted Rh-based catalysts have been widely used for CO2 hydrogenation, especially for the ethanol synthesis. However, this reaction usually suffers low CO2 conversion and alcohols selectivity due to the formation of byproducts methane and CO. This paper describes an efficient vanadium oxide promoted Rh-based catalysts confined in mesopore MCM-41. The Rh-0.3VOx/MCM-41 catalyst shows superior conversion (~12%) and ethanol selectivity (~24%) for CO2 hydrogenation. The promoting effect can be attributed to the synergism of high Rh dispersion by the confinement effect of MCM-41 and the formation of VOx-Rh interface sites. Experimental and theoretical results indicate the formation of til-CO at VOx-Rh interface sites is easily dissociated into *CHx, and then *CHx can be inserted by CO to form CH3CO*, followed by CH3CO* hydrogenation to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang W, Wang S, Ma X, Gong J. Chem Soc Rev, 2011, 40: 3703

    CAS  PubMed  Google Scholar 

  2. Porosoff MD, Yan B, Chen JG. Energy Environ Sci, 2016, 9: 62–73

    CAS  Google Scholar 

  3. Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y. Catal Sci Technol, 2017, 7: 4580–4598

    CAS  Google Scholar 

  4. Aresta M, Dibenedetto A, Angelini A. Chem Rev, 2014, 114: 1709–1742

    CAS  PubMed  Google Scholar 

  5. Devarapalli M, Atiyeh HK. Biofuel Res J, 2015, 2: 268–280

    CAS  Google Scholar 

  6. Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J. Chem Soc Rev, 2017, 46: 1358–1426

    CAS  PubMed  Google Scholar 

  7. Wang L, Wang L, Zhang J, Liu X, Wang H, Zhang W, Yang Q, Ma J, Dong X, Yoo SJ, Kim JG, Meng X, Xiao FS. Angew Chem Int Ed, 2018, 57: 6104–6108

    CAS  Google Scholar 

  8. He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B. Angew Chem Int Ed, 2016, 55: 737–741

    CAS  Google Scholar 

  9. Inui T, Yamamoto T, Inoue M, Hara H, Takeguchi T, Kim JB. Appl Catal A-Gen, 1999, 186: 395–406

    CAS  Google Scholar 

  10. Takagawa M, Okamoto A, Fujimura H, Izawa Y, Arakawa H. Stud Surf Sci Catal, 1998, 114: 525–528

    CAS  Google Scholar 

  11. Higuchi K, Haneda Y, Tabata K, Nakahara Y, Takagawa M. Stud Surf Sci Catal, 1998, 114: 517–520

    CAS  Google Scholar 

  12. Li S, Guo H, Luo C, Zhang H, Xiong L, Chen X, Ma L. Catal Lett, 2013, 143: 345–355

    CAS  Google Scholar 

  13. Kusama H, Okabe K, Sayama K, Arakawa H. Appl Organometal Chem, 2000, 14: 836–840

    CAS  Google Scholar 

  14. Kitamura Bando K, Soga K, Kunimori K, Arakawa H. Appl Catal A-Gen, 1998, 175: 67–81

    CAS  Google Scholar 

  15. Kusama H, Okabe K, Sayama K, Arakawa H. Energy, 1997, 22: 343–348

    CAS  Google Scholar 

  16. Kusama H, Okabe K, Sayama K, Arakawa H. Catal Today, 1996, 28: 261–266

    CAS  Google Scholar 

  17. Kusama H, Bando KK, Okabe K, Arakawa H. Appl Catal A-Gen, 2001, 205: 285–294

    CAS  Google Scholar 

  18. Kusama H, Okabe K, Arakawa H. Appl Catal A-Gen, 2001, 207: 85–94

    CAS  Google Scholar 

  19. Yang C, Mu R, Wang G, Song J, Tian H, Zhao ZJ, Gong J. Chem Sci, 2019, 10: 3161–3167

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carrillo P, Shi R, Teeluck K, Senanayake SD, White MG. ACS Catal, 2018, 8: 7279–7286

    CAS  Google Scholar 

  21. Palomino RM, Magee JW, Llorca J, Senanayake SD, White MG. J Catal, 2015, 329: 87–94

    CAS  Google Scholar 

  22. Wang Y, Luo H, Liang D, Bao X. J Catal, 2000, 196: 46–55

    CAS  Google Scholar 

  23. Yang N, Yoo JS, Schumann J, Bothra P, Singh JA, Valle E, Abild-Pedersen F, Nørskov JK, Bent SF. ACS Catal, 2017, 7: 5746–5757

    CAS  Google Scholar 

  24. Prieto G, Concepción P, Martínez A, Mendoza E. J Catal, 2011, 280: 274–288

    CAS  Google Scholar 

  25. Chen Y, Zhang H, Ma H, Qian W, Jin F, Ying W. Catal Lett, 2018, 148: 691–698

    CAS  Google Scholar 

  26. Schwartz V, Campos A, Egbebi A, Spivey JJ, Overbury SH. ACS Catal, 2011, 1: 1298–1306

    CAS  Google Scholar 

  27. Mo X, Gao J, Umnajkaseam N, Goodwin Jr. JG. J Catal, 2009, 267: 167–176

    CAS  Google Scholar 

  28. Matsubu JC, Yang VN, Christopher P. J Am Chem Soc, 2015, 137: 3076–3084

    CAS  PubMed  Google Scholar 

  29. Arakawa H, Takeuchi K, Matsuzaki T, Sugi Y. Chem Lett, 1984, 13: 1607–1610

    Google Scholar 

  30. Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561

    CAS  Google Scholar 

  31. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  33. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Google Scholar 

  34. Henkelman G, Uberuaga BP, Jónsson H. J Chem Phys, 2000, 113: 9901–9904

    CAS  Google Scholar 

  35. Wu Z, Kim HS, Stair PC, Rugmini S, Jackson SD. J Phys Chem B, 2005, 109: 2793–2800

    CAS  PubMed  Google Scholar 

  36. Liu G, Zhao ZJ, Wu T, Zeng L, Gong J. ACS Catal, 2016, 6: 5207–5214

    CAS  Google Scholar 

  37. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat Mater, 2007, 6: 507–511

    CAS  PubMed  Google Scholar 

  38. Bulánek R, Čičmanec P, Setnička M. Phys Procedia, 2013, 44: 195–205

    Google Scholar 

  39. Kip BJ, Smeets PAT, van Grondelle J, Prins R. Appl Catal, 1987, 33: 181–208

    CAS  Google Scholar 

  40. Beutel T, Siborov V, Tesche B, Knözinger H. J Catal, 1997, 167: 379–390

    CAS  Google Scholar 

  41. Yamagishi T, Furikado I, Ito S, Miyao T, Naito S, Tomishige K, Kunimori K. J Mol Catal A-Chem, 2006, 244: 201–212

    CAS  Google Scholar 

  42. Liu Y, Göeltl F, Ro I, Ball MR, Sener C, Aragão IB, Zanchet D, Huber GW, Mavrikakis M, Dumesic JA. ACS Catal, 2017, 7: 4550–4563

    CAS  Google Scholar 

  43. Zhang W, Wang L, Liu H, Hao Y, Li H, Khan MU, Zeng J. Nano Lett, 2017, 17: 788–793

    CAS  PubMed  Google Scholar 

  44. Swapnesh A, Srivastava VC, Mall ID. Chem Eng Technol, 2014, 37: 1765–1777

    CAS  Google Scholar 

  45. He X. Int J Oil Gas Coal Eng, 2017, 5: 145–152

    CAS  Google Scholar 

  46. Heyl D, Rodemerck U, Bentrup U. ACS Catal, 2016, 6: 6275–6284

    CAS  Google Scholar 

  47. Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Pan X, Christopher P. Nat Chem, 2017, 9: 120–127

    CAS  PubMed  Google Scholar 

  48. Stevenson SA, Lisitsyn A, Knoezinger H. J Phys Chem, 1990, 94: 1576–1581

    CAS  Google Scholar 

  49. Wang Y, Song Z, Ma D, Luo H, Liang D, Bao X. J Mol Catal A-Chem, 1999, 149: 51–61

    CAS  Google Scholar 

  50. Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci Adv, 2017, 3: e1701290

    PubMed  PubMed Central  Google Scholar 

  51. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernández Sanz J, Rodriguez JA. Science, 2014, 345: 546–550

    CAS  PubMed  Google Scholar 

  52. Wang X, Hong Y, Shi H, Szanyi J. J Catal, 2016, 343: 185–195

    CAS  Google Scholar 

  53. Chen Y, Choi S, Thompson LT. J Catal, 2016, 343: 147–156

    CAS  Google Scholar 

  54. Schweicher J, Bundhoo A, Kruse N. J Am Chem Soc, 2012, 134: 16135–16138

    CAS  PubMed  Google Scholar 

  55. Zhao YH, Sun K, Ma X, Liu J, Sun D, Su HY, Li WX. Angew Chem Int Ed, 2011, 50: 5335–5338

    CAS  Google Scholar 

  56. Kusama H, Bando KK, Okabe K, Arakawa H. Appl Catal A-Gen, 2000, 197: 255–268

    CAS  Google Scholar 

  57. Sun J, Cai Q, Wan Y, Wan S, Wang L, Lin J, Mei D, Wang Y. ACS Catal, 2016, 6: 5771–5785

    CAS  Google Scholar 

  58. Kattel S, Yu W, Yang X, Yan B, Huang Y, Wan W, Liu P, Chen JG. Angew Chem Int Ed, 2016, 55: 7968–7973

    CAS  Google Scholar 

  59. Kattel S, Liu P, Chen JG. J Am Chem Soc, 2017, 139: 9739–9754

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFB0600901), the National Natural Science Foundation of China (21525626, 21603159, 21676181), and the Program of Introducing Talents of Discipline to Universities (B06006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rentao Mu or Jinlong Gong.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Luo, R., Yang, C. et al. Active sites in CO2 hydrogenation over confined VOx-Rh catalysts. Sci. China Chem. 62, 1710–1719 (2019). https://doi.org/10.1007/s11426-019-9590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9590-6

Keywords

Navigation