Skip to main content
Log in

Hydrogen production via catalytic decomposition of NH3 using promoted MgO-supported ruthenium catalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Catalytic decomposition of NH3 to high purity hydrogen offers a promising strategy for fuel cells, but presents challenges for high hydrogen yields at comparatively low temperatures due to the lack of efficient catalysts. Here, we report the facile preparation of ultra-fine ruthenium (Ru) species dispersed on MgO, which show excellent activity and high temperature stability for NH3 decomposition reaction. The hydrogen yield of the prepared Ru/MgO catalysts reaches ca. 2,092 mmol H2 gRu−1 min−1 at 450 °C, far exceeding that of the previously reported most reactive Ru-based catalysts and the same chemical composition samples prepared by other approaches. Various characterization techniques containing X-ray absorption fine structure (XAFS), in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRTFTS) and temperature-programmed reduction/desorption (TPR/TPD) were carried out to explore the structure-function relation of the prepared Ru/MgO catalysts. We found that the Ru species interact strongly with the MgO support, which can efficiently protect the Ru species and MgO support from agglomerating during NH3 decomposition test, maintaining the stability of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu ZP, Chen L, Chen C, Yuan ZY. Mol Catal, 2018, 455: 14–22

    CAS  Google Scholar 

  2. He T, Pachfule P, Wu H, Xu Q, Chen P. Nat Rev Mater, 2016, 1: 16059

    CAS  Google Scholar 

  3. Chen W, Huang Z, Wu G, Chen P. Sci China Chem, 2015, 58: 169–173

    CAS  Google Scholar 

  4. Zhang Z, Liguori S, Fuerst TF, Way JD, Wolden CA. ACS Sustain Chem Eng, 2019, 7: 5975–5985

    CAS  Google Scholar 

  5. Yi Y, Wang L, Guo Y, Sun S, Guo H. AIChE J, 2018, 37: aic.16479

    Google Scholar 

  6. Guo J, Chen P. Chem, 2017, 3: 709–712

    CAS  Google Scholar 

  7. Armenise S, Cazaña F, Monzón A, García-Bordejé E. Fuel, 2018, 233: 851–859

    CAS  Google Scholar 

  8. Afif A, Radenahmad N, Cheok Q, Shams S, Kim JH, Azad AK. Renew Sustain Energy Rev, 2016, 60: 822–835

    CAS  Google Scholar 

  9. Tseng JC, Gu D, Pistidda C, Horstmann C, Dornheim M, Ternieden J, Weidenthaler C. ChemCatChem, 2018, 10: 4465–4472

    CAS  Google Scholar 

  10. Huang C, Yu Y, Yang J, Yan Y, Wang D, Hu F, Wang X, Zhang R, Feng G. Appl Surf Sci, 2019, 476: 928–936

    CAS  Google Scholar 

  11. Wang Z, Qu Y, Shen X, Cai Z. Int J Hydrogen Energy, 2019, 44: 7300–7307

    CAS  Google Scholar 

  12. Lamb K, Hla SS, Dolan M. Int J Hydrogen Energy, 2019, 44: 3726–3736

    CAS  Google Scholar 

  13. Ju X, Liu L, Yu P, Guo J, Zhang X, He T, Wu G, Chen P. Appl Catal B-Environ, 2017, 211: 167–175

    CAS  Google Scholar 

  14. Yu P, Guo J, Liu L, Wang P, Chang F, Wang H, Ju X, Chen P. J Phys Chem C, 2016, 120: 2822–2828

    CAS  Google Scholar 

  15. Hill AK, Torrente-Murciano L. Appl Catal B-Environ, 2015, 172–173: 129–135

    Google Scholar 

  16. Karim AM, Prasad V, Mpourmpakis G, Lonergan WW, Frenkel AI, Chen JG, Vlachos DG. J Am Chem Soc, 2009, 131: 12230–12239

    CAS  PubMed  Google Scholar 

  17. Yin SF, Zhang QH, Xu BQ, Zhu WX, Ng CF, Au CT. J Catal, 2004, 224: 384–396

    CAS  Google Scholar 

  18. Huang C, Li H, Yang J, Wang C, Hu F, Wang X, Lu ZH, Feng G, Zhang R. Appl Surf Sci, 2019, 478: 708–716

    CAS  Google Scholar 

  19. Wang L, Yi YH, Guo HC, Du XM, Zhu B, Zhu YM. Catalysts, 2019, 9: 107

    Google Scholar 

  20. Zhang ZS, Fu XP, Wang WW, Jin Z, Song QS, Jia CJ. Sci China Chem, 2018, 61: 1389–1398

    CAS  Google Scholar 

  21. Xun Y, He X, Yan H, Gao Z, Jin Z, Jia C. J Rare Earths, 2017, 35: 15–23

    CAS  Google Scholar 

  22. Bell TE, Torrente-Murciano L. Top Catal, 2016, 59: 1438–1457

    CAS  Google Scholar 

  23. Yan H, Xu YJ, Gu YQ, Li H, Wang X, Jin Z, Shi S, Si R, Jia CJ, Yan CH. J Phys Chem C, 2016, 120: 7685–7696

    CAS  Google Scholar 

  24. Wang L, Yi Y, Zhao Y, Zhang R, Zhang J, Guo H. ACS Catal, 2015, 5: 4167–4174

    CAS  Google Scholar 

  25. Guo J, Wang P, Wu G, Wu A, Hu D, Xiong Z, Wang J, Yu P, Chang F, Chen Z, Chen P. Angew Chem Int Ed, 2015, 54: 2950–2954

    CAS  Google Scholar 

  26. Gu YQ, Fu XP, Du PP, Gu D, Jin Z, Huang YY, Si R, Zheng LQ, Song QS, Jia CJ, Weidenthaler C. J Phys Chem C, 2015, 119: 17102–17110

    CAS  Google Scholar 

  27. Zheng W, Cotter TP, Kaghazchi P, Jacob T, Frank B, Schlichte K, Zhang W, Su DS, Schüth F, Schlögl R. J Am Chem Soc, 2013, 135: 3458–3464

    CAS  PubMed  Google Scholar 

  28. Zhao Z, Zou H, Lin W. J Rare Earths, 2013, 31: 247–250

    CAS  Google Scholar 

  29. Hu XC, Wang WW, Jin Z, Wang X, Si R, Jia CJ. J Energy Chem, 2019, 38: 41–49

    Google Scholar 

  30. Hu XC, Wang WW, Gu YQ, Jin Z, Song QS, Jia CJ. ChemPlusChem, 2017, 82: 368–375

    CAS  Google Scholar 

  31. Lu AH, Nitz JJ, Comotti M, Weidenthaler C, Schlichte K, Lehmann CW, Terasaki O, Schuth F. J Am Chem Soc, 2010, 132: 14152–14162

    CAS  PubMed  Google Scholar 

  32. Lamb KE, Dolan MD, Kennedy DF. Int J Hydrogen Energy, 2019, 44: 3580–3593

    CAS  Google Scholar 

  33. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G. Appl Catal B-Environ, 2018, 226: 162–181

    CAS  Google Scholar 

  34. Wang SJ, Yin SF, Li L, Xu BQ, Ng CF, Au CT. Appl Catal B-Environ, 2004, 52: 287–299

    CAS  Google Scholar 

  35. Mirzaei F, Rezaei M, Meshkani F, Fattah Z. J Ind Eng Chem, 2015, 21: 662–667

    CAS  Google Scholar 

  36. Yin SF, Xu BQ, Wang SJ, Ng CF, Au CT. Catal Lett, 2004, 96: 113–116

    CAS  Google Scholar 

  37. Zhang J, Xu H, Ge Q, Li W. Catal Commun, 2006, 7: 148–152

    CAS  Google Scholar 

  38. Dole HAE, Safady LF, Ntais S, Couillard M, Baranova EA. J Catal, 2014, 318: 85–94

    CAS  Google Scholar 

  39. Guan H, Wang P, Wang H, Zhao B, Zhu Y, Xie Y. Acta Physico-Chim Sin, 2006, 22: 804–807

    CAS  Google Scholar 

  40. Yu H, Wei X, Li J, Gu S, Zhang S, Wang L, Ma J, Li L, Gao Q, Si R, Sun F, Wang Y, Song F, Xu H, Yu X, Zou Y, Wang J, Jiang Z, Huang Y. Nucl Sci Tech, 2015, 26: 050102

    Google Scholar 

  41. Zhao D, Liu H, Jiang L, Ge J, Xu L, Cao Q. Energy Fuels, 2017, 31: 11939–11946

    CAS  Google Scholar 

  42. Tsubouchi N, Ohtaka N, Ohtsuka Y. Energy Fuels, 2015, 30: 2320–2327

    Google Scholar 

  43. Kishida K, Kitano M, Inoue Y, Sasase M, Nakao T, Tada T, Abe H, Niwa Y, Yokoyama T, Hara M, Hosono H. Chem Eur J, 2018, 24: 7976–7984

    CAS  PubMed  Google Scholar 

  44. Rarogpilecka W, Miskiewicz E, Szmigiel D, Kowalczyk Z. J Catal, 2005, 231: 11–19

    CAS  Google Scholar 

  45. Su Q, Gu LL, Zhong AH, Yao Y, Ji WJ, Ding WP, Au CT. Catal Lett, 2018, 148: 894–903

    CAS  Google Scholar 

  46. Li D, Li R, Lu M, Lin X, Zhan Y, Jiang L. Appl Catal B-Environ, 2017, 200: 566–577

    CAS  Google Scholar 

  47. Liu J, Li X, Zhao Q, Ke J, Xiao H, Lv X, Liu S, Tadé M, Wang S. Appl Catal B-Environ, 2017, 200: 297–308

    CAS  Google Scholar 

  48. Casapu M, Kröcher O, Mehring M, Nachtegaal M, Borca C, Harfouche M, Grolimund D. J Phys Chem C, 2010, 114: 9791–9801

    CAS  Google Scholar 

  49. Hashimoto K, Toukai N. J Mol Catal A-Chem, 2000, 161: 171–178

    CAS  Google Scholar 

  50. Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey RJ. J Catal, 1995, 157: 523–535

    CAS  Google Scholar 

  51. Izumi Y, Aika K. J Phys Chem, 1995, 99: 10346–10353

    CAS  Google Scholar 

  52. Zhang L, He H. J Catal, 2009, 268: 18–25

    CAS  Google Scholar 

  53. Abdel-Mageed AM, Kučerová G, Bansmann J, Behm RJ. ACS Catal, 2017, 7: 6471–6484

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Excellent Young Scientists Fund from National Natural Science Foundation of China (21622106), other projects from the National Natural Science Foundation of China (21773288, 21805167, 11574281, 21771117), the Outstanding Scholar Fund (JQ201703) and the Doctoral Fund (ZR2018BB010) from the Science Foundation of Shandong Province of China, the Taishan Scholar Project of Shandong Province of China, the National Key Basic Research Program of China (2017YFA0403402), and the Future Program for Young Scholar of Shandong University. We thank the Center of Structural Characterization and Property Measurements at Shandong University for the help on sample characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Wei Wang or Chun-Jiang Jia.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, XC., Wang, WW., Si, R. et al. Hydrogen production via catalytic decomposition of NH3 using promoted MgO-supported ruthenium catalysts. Sci. China Chem. 62, 1625–1633 (2019). https://doi.org/10.1007/s11426-019-9578-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9578-8

Keywords

Navigation