Skip to main content
Log in

Metal-organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal-organic framework nanosheets have gained great attention because of the diversified structures, tunable chemical functionalities, large surface area and ultrathin thickness. In this review, we introduce the recent progress in the favorable applications for catalysis, sensing, energy storage and gas separation, which has significantly addressed the advantages of the nanosheets. A summary of nanosheet fabrication approaches is put forward to establish a comprehension on the origin of the MOF nanosheets. And at last but not the least, we present the concerns on the challenges and opportunities of these materials from our perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D. Chem Mater, 2017, 29: 2618–2625

    CAS  Google Scholar 

  2. Barea E, Montoro C, Navarro JAR. Chem Soc Rev, 2014, 43: 5419–5430

    CAS  PubMed  Google Scholar 

  3. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY. Chem Soc Rev, 2014, 43: 6011–6061

    CAS  PubMed  Google Scholar 

  4. Li JR, Kuppler RJ, Zhou HC. Chem Soc Rev, 2009, 38: 1477–1504

    CAS  PubMed  Google Scholar 

  5. Liu Y, Ban Y, Yang W. Adv Mater, 2017, 29: 1606949

    Google Scholar 

  6. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Chem Rev, 2012, 112: 1105–1125

    CAS  PubMed  Google Scholar 

  7. Wang Z, Jingjing Q, Wang X, Zhang Z, Chen Y, Huang X, Huang W. Chem Soc Rev, 2018, 47: 6128–6174

    CAS  PubMed  Google Scholar 

  8. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Chem Rev, 2012, 112: 1232–1268

    CAS  PubMed  Google Scholar 

  9. Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X. Nat Energy, 2016, 1: 15006

    CAS  Google Scholar 

  10. Sevilla M, Mokaya R. Energy Environ Sci, 2014, 7: 1250–1280

    CAS  Google Scholar 

  11. Ashworth DJ, Foster JA. J Mater Chem A, 2018, 6: 16292–16307

    CAS  Google Scholar 

  12. Zheng C, Zhu J, Yang C, Lu C, Chen Z, Zhuang X. Sci China Chem, 2019, 62: 1145–1193

    CAS  Google Scholar 

  13. Zhang Z, Chen Y, He S, Zhang J, Xu X, Yang Y, Nosheen F, Saleem F, He W, Wang X. Angew Chem Int Ed, 2014, 10: 12517–12521

    Google Scholar 

  14. Song WJ. Talanta, 2017, 170: 74–80

    CAS  PubMed  Google Scholar 

  15. Shen Y, Shan B, Cai H, Qin Y, Agarwal A, Trivedi DB, Chen B, Liu L, Zhuang H, Mu B, Tongay S. Adv Mater, 2018, 30: 1802497

    Google Scholar 

  16. Yuan S, Zhu J, Li Y, Zhao Y, Li J, Van Puyvelde P, van der Bruggen B. J Mater Chem A, 2019, 7: 2723–2729

    CAS  Google Scholar 

  17. Zheng S, Li B, Tang Y, Li Q, Xue H, Pang H. Nanoscale, 2018, 10: 13270–13276

    CAS  PubMed  Google Scholar 

  18. Cao L, Lin Z, Peng F, Wang W, Huang R, Wang C, Yan J, Liang J, Zhang Z, Zhang T, Long L, Sun J, Lin W. Angew Chem Int Ed, 2016, 55: 4962–4966

    CAS  Google Scholar 

  19. Shi W, Cao L, Zhang H, Zhou X, An B, Lin Z, Dai R, Li J, Wang C, Lin W. Angew Chem Int Ed, 2017, 56: 9704–9709

    CAS  Google Scholar 

  20. Lin Z, Thacker NC, Sawano T, Drake T, Ji P, Lan G, Cao L, Liu S, Wang C, Lin W. Chem Sci, 2018, 9: 143–151

    CAS  PubMed  Google Scholar 

  21. Yan R, Zhao Y, Yang H, Kang XJ, Wang C, Wen LL, Lu ZD. Adv Funct Mater, 2018, 28: 1802021

    Google Scholar 

  22. He S, Chen Y, Zhang Z, Ni B, He W, Wang X. Chem Sci, 2016, 7: 7101–7105

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhan G, Fan L, Zhao F, Huang Z, Chen B, Yang X, Zhou S. Adv Funct Mater, 2019, 29: 1806720

    Google Scholar 

  24. Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou SX. Adv Funct Mater, 2018, 28: 1801554

    Google Scholar 

  25. Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H. Adv Mater, 2017, 29: 1700102

    Google Scholar 

  26. Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, Qu X. ACS Nano, 2019, 13: 5222–5230

    CAS  PubMed  Google Scholar 

  27. Hu Z, Mahdi EM, Peng Y, Qian Y, Zhang B, Yan N, Yuan D, Tan JC, Zhao D. J Mater Chem A, 2017, 5: 8954–8963

    CAS  Google Scholar 

  28. Zhang X, Chang L, Yang Z, Shi Y, Long C, Han J, Zhang B, Qiu X, Li G, Tang Z. Nano Res, 2019, 12: 437–440

    CAS  Google Scholar 

  29. Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Nat Energy, 2016, 1: 16184

    CAS  Google Scholar 

  30. Duan J, Chen S, Zhao C. Nat Commun, 2017, 8: 15341

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li FL, Wang P, Huang X, Young DJ, Wang HF, Braunstein P, Lang JP. Angew Chem Int Ed, 2019, 58: 7051–7056

    CAS  Google Scholar 

  32. Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X. Angew Chem Int Ed, 2015, 54: 12058–12063

    CAS  Google Scholar 

  33. Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, Zhao Y, Zhang H. Adv Mater, 2015, 27: 7372–7378

    CAS  PubMed  Google Scholar 

  34. Córdova Wong BJ, Xu D, Bao SS, Zheng LM, Lei J. ACS Appl Mater Interfaces, 2019, 11: 12986–12992

    PubMed  Google Scholar 

  35. Xu H, Gao J, Qian X, Wang J, He H, Cui Y, Yang Y, Wang Z, Qian G. J Mater Chem A, 2016, 4: 10900–10905

    CAS  Google Scholar 

  36. Luo YH, Chen C, He C, Zhu YY, Hong DL, He XT, An PJ, Wu HS, Sun BW. ACS Appl Mater Interfaces, 2018, 10: 28860–28867

    CAS  PubMed  Google Scholar 

  37. Campbell MG, Sheberla D, Liu SF, Swager TM, Dincă M. Angew Chem Int Ed, 2015, 54: 4349–4352

    CAS  Google Scholar 

  38. Campbell MG, Liu SF, Swager TM, Dincă M. J Am Chem Soc, 2015, 137: 13780–13783

    CAS  PubMed  Google Scholar 

  39. Sun Z, Yu S, Zhao L, Wang J, Li Z, Li G. Chem Eur J, 2018, 24: 10829–10839

    CAS  PubMed  Google Scholar 

  40. Larcher D, Tarascon JM. Nat Chem, 2014, 7: 19–29

    PubMed  Google Scholar 

  41. Choi JW, Aurbach D. Nat Rev Mater, 2016, 1: 16013

    CAS  Google Scholar 

  42. Wang Y, Qu Q, Liu G, Battaglia VS, Zheng H. Nano Energy, 2017, 39: 200–210

    CAS  Google Scholar 

  43. Li C, Hu X, Tong W, Yan W, Lou X, Shen M, Hu B. ACS Appl Mater Interfaces, 2017, 9: 29829–29838

    CAS  PubMed  Google Scholar 

  44. Huang JK, Li M, Wan Y, Dey S, Ostwal M, Zhang D, Yang CW, Su CJ, Jeng US, Ming J, Amassian A, Lai Z, Han Y, Li S, Li LJ. ACS Nano, 2018, 12: 836–843

    CAS  PubMed  Google Scholar 

  45. Tian M, Pei F, Yao M, Fu Z, Lin L, Wu G, Xu G, Kitagawa H, Fang X. Energy Storage Mater, 2018, doi: https://doi.org/10.1016/j.ensm.2018.12.016

    Google Scholar 

  46. Simon P, Gogotsi Y. Nat Mater, 2008, 7: 845–854

    CAS  PubMed  Google Scholar 

  47. Jiao Y, Pei J, Yan C, Chen D, Hu Y, Chen G. J Mater Chem A, 2016, 4: 13344–13351

    CAS  Google Scholar 

  48. Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC. J Am Chem Soc, 2015, 137: 118–121

    CAS  PubMed  Google Scholar 

  49. Jiao Y, Pei J, Chen D, Yan C, Hu Y, Zhang Q, Chen G. J Mater Chem A, 2017, 5: 1094–1102

    CAS  Google Scholar 

  50. Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M. J Am Chem Soc, 2014, 136: 8859–8862

    CAS  PubMed  Google Scholar 

  51. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M. Nat Mater, 2016, 16: 220–224

    PubMed  Google Scholar 

  52. Feng D, Lei T, Lukatskaya MR, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko AA, Kulkarni A, Xiao J, Fredrickson K, Tok JB, Zou X, Cui Y, Bao Z. Nat Energy, 2018, 3: 30–36

    CAS  Google Scholar 

  53. Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Angew Chem Int Ed, 2017, 56: 9292–9310

    CAS  Google Scholar 

  54. Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346: 1356–1359

    CAS  PubMed  Google Scholar 

  55. Seoane B, Coronas J, Gascon I, Etxeberria Benavides M, Karvan O, Caro J, Kapteijn F, Gascon J. Chem Soc Rev, 2015, 44: 2421–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng Y, Li Y, Ban Y, Yang W. Angew Chem Int Ed, 2017, 56: 9757–9761

    CAS  Google Scholar 

  57. Wang X, Chi C, Zhang K, Qian Y, Gupta KM, Kang Z, Jiang J, Zhao D. Nat Commun, 2017, 8: 14460

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Lin L, Tu M, Nian P, Howarth AJ, Farha OK, Qiu J, Zhang X. Nano Res, 2018, 11: 1850–1860

    CAS  Google Scholar 

  59. Li Y, Liu H, Wang H, Qiu J, Zhang X. Chem Sci, 2018, 9: 4132–4141

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang F, Wu M, Wang Y, Ashtiani S, Jiang H. ACS Appl Mater Interfaces, 2019, 11: 990–997

    CAS  PubMed  Google Scholar 

  61. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés I, Xamena FX, Gascon J. Nat Mater, 2015, 14: 48–55

    CAS  PubMed  Google Scholar 

  62. Vandezande P, Gevers LEM, Vankelecom IFJ. Chem Soc Rev, 2008, 37: 365–405

    CAS  PubMed  Google Scholar 

  63. Jiang Y, Ryu GH, Joo SH, Chen X, Lee SH, Chen X, Huang M, Wu X, Luo D, Huang Y, Lee JH, Wang B, Zhang X, Kwak SK, Lee Z, Ruoff RS. ACS Appl Mater Interfaces, 2017, 9: 28107–28116

    CAS  PubMed  Google Scholar 

  64. Ang H, Hong L. ACS Appl Mater Interfaces, 2017, 9: 28079–28088

    CAS  PubMed  Google Scholar 

  65. Peng Y, Yao R, Yang W. Chem Commun, 2019, 55: 3935–3938

    CAS  Google Scholar 

  66. Backes C, Higgins TM, Kelly A, Boland C, Harvey A, Hanlon D, Coleman JN. Chem Mater, 2017, 29: 243–255

    CAS  Google Scholar 

  67. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. Nat Nanotech, 2008, 3: 563–568

    CAS  Google Scholar 

  68. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461: 246–249

    CAS  PubMed  Google Scholar 

  69. Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem Soc Rev, 2018, 47: 6267–6295

    CAS  PubMed  Google Scholar 

  70. Li Y, Fu Z, Xu G. Coord Chem Rev, 2019, 388: 79–106

    CAS  Google Scholar 

  71. Amo-Ochoa P, Welte L, González-Prieto R, Sanz Miguel PJ, Gómez-García CJ, Mateo-Martí E, Delgado S, Gómez-Herrero J, Zamora F. Chem Commun, 2010, 46: 3262–3264

    CAS  Google Scholar 

  72. Li PZ, Maeda Y, Xu Q. Chem Commun, 2011, 47: 8436–8438

    CAS  Google Scholar 

  73. Tan JC, Saines PJ, Bithell EG, Cheetham AK. ACS Nano, 2012, 6: 615–621

    CAS  PubMed  Google Scholar 

  74. Kondo A, Tiew CC, Moriguchi F, Maeda K. Dalton Trans, 2013, 42: 15267–15270

    CAS  PubMed  Google Scholar 

  75. Beldon PJ, Tominaka S, Singh P, Saha Dasgupta T, Bithell EG, Cheetham AK. Chem Commun, 2014, 50: 3955–3957

    CAS  Google Scholar 

  76. Saines PJ, Steinmann M, Tan JC, Yeung HHM, Li W, Barton PT, Cheetham AK. Inorg Chem, 2012, 51: 11198–11209

    CAS  PubMed  Google Scholar 

  77. Hermosa C, Horrocks BR, Martínez JI, Liscio F, Gómez-Herrero J, Zamora F. Chem Sci, 2015, 6: 2553–2558

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Foster JA, Henke S, Schneemann A, Fischer RA, Cheetham AK. Chem Commun, 2016, 52: 10474–10477

    CAS  Google Scholar 

  79. Cliffe MJ, Castillo-Martínez E, Wu Y, Lee J, Forse AC, Firth FCN, Moghadam PZ, Fairen-Jimenez D, Gaultois MW, Hill JA, Magdysyuk OV, Slater B, Goodwin AL, Grey CP. J Am Chem Soc, 2017, 139: 5397–5404

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mohmeyer A, Schaate A, Brechtken B, Rode JC, Warwas DP, Zahn G, Haug RJ, Behrens P. Chem Eur J, 2018, 24: 12848–12855

    CAS  PubMed  Google Scholar 

  81. Gallego A, Hermosa C, Castillo O, Berlanga I, Gómez-García CJ, Mateo-Martí E, Martínez JI, Flores F, Gómez-Navarro C, Gómez-Herrero J, Delgado S, Zamora F. Adv Mater, 2013, 25: 2141–2146

    CAS  PubMed  Google Scholar 

  82. Au VKM, Nakayashiki K, Huang H, Suginome S, Sato H, Aida T. J Am Chem Soc, 2019, 141: 53–57

    CAS  PubMed  Google Scholar 

  83. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669

    CAS  PubMed  Google Scholar 

  84. Abhervé A, Mañas-Valero S, Clemente-León M, Coronado E. Chem Sci, 2015, 6: 4665–4673

    PubMed  PubMed Central  Google Scholar 

  85. López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal IJ, Bereciartua PJ, Rodríguez-Velamazan JA, Waerenborgh JC, Vieira BJC, Davidovikj D, Steeneken PG, van der Zant HSJ, Mínguez Espallargas G, Coronado E. Nat Chem, 2018, 10: 1001–1007

    PubMed  Google Scholar 

  86. Ding Y, Chen YP, Zhang X, Chen L, Dong Z, Jiang HL, Xu H, Zhou HC. J Am Chem Soc, 2017, 139: 9136–9139

    CAS  PubMed  Google Scholar 

  87. Huang J, Li Y, Huang RK, He CT, Gong L, Hu Q, Wang L, Xu YT, Tian XY, Liu SY, Ye ZM, Wang F, Zhou DD, Zhang WX, Zhang JP. Angew Chem Int Ed, 2018, 57: 4632–4636

    CAS  Google Scholar 

  88. Li Y, Huang J, Mo ZW, Zhang XW, Cheng XN, Gong L, Zhou DD, Zhang JP. Sci Bull, 2019, 64: 964–967

    Google Scholar 

  89. Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H. J Am Chem Soc, 2012, 134: 16524–16527

    CAS  PubMed  Google Scholar 

  90. Junggeburth SC, Diehl L, Werner S, Duppel V, Sigle W, Lotsch BV. J Am Chem Soc, 2013, 135: 6157–6164

    CAS  PubMed  Google Scholar 

  91. Xue F, Kumar P, Xu W, Mkhoyan KA, Tsapatsis M. Chem Mater, 2018, 30: 69–73

    CAS  Google Scholar 

  92. Pustovarenko A, Goesten MG, Sachdeva S, Shan M, Amghouz Z, Belmabkhout Y, Dikhtiarenko A, Rodenas T, Keskin D, Voets IK, Weckhuysen BM, Eddaoudi M, de Smet LCPM, Sudhölter EJR, Kapteijn F, Seoane B, Gascon J. Adv Mater, 2018, 30: 1707234

    Google Scholar 

  93. Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Nat Mater, 2010, 9: 565–571

    CAS  PubMed  Google Scholar 

  94. Motoyama S, Makiura R, Sakata O, Kitagawa H. J Am Chem Soc, 2011, 133: 5640–5643

    CAS  PubMed  Google Scholar 

  95. Bauer T, Zheng Z, Renn A, Enning R, Stemmer A, Sakamoto J, Schlüter AD. Angew Chem Int Ed, 2011, 50: 7879–7884

    CAS  Google Scholar 

  96. Makiura R, Konovalov O. Sci Rep, 2013, 3: 2506

    PubMed  PubMed Central  Google Scholar 

  97. Hoshiko K, Kambe T, Sakamoto R, Takada K, Nishihara H. Chem Lett, 2013, 43: 252–253

    Google Scholar 

  98. Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu JH, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H. J Am Chem Soc, 2013, 135: 2462–2465

    CAS  PubMed  Google Scholar 

  99. Sakamoto R, Hoshiko K, Liu Q, Yagi T, Nagayama T, Kusaka S, Tsuchiya M, Kitagawa Y, Wong WY, Nishihara H. Nat Commun, 2015, 6: 6713–6716

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sakamoto R, Yagi T, Hoshiko K, Kusaka S, Matsuoka R, Maeda H, Liu Z, Liu Q, Wong WY, Nishihara H. Angew Chem Int Ed, 2017, 56: 3526–3530

    CAS  Google Scholar 

  101. Huang X, Sheng P, Tu Z, Zhang F, Wang J, Geng H, Zou Y, Di CA, Yi Y, Sun Y, Xu W, Zhu D. Nat Commun, 2015, 6: 7408

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang L, Zhang X, Han Y, Wang Q, Fang Y, Dong S. J Mater Chem A, 2017, 5: 18610–18617

    CAS  Google Scholar 

  103. Wang Y, Li L, Yan L, Gu X, Dai P, Liu D, Bell JG, Zhao G, Zhao X, Thomas KM. Chem Mater, 2018, 30: 3048–3059

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21808215, 21721004), the Dalian Institute of Chemical Physics, CAS (ZZBS201815) and the Liaoning Revitalization Talents Program (XLYC1801004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishen Yang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Yang, W. Metal-organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures. Sci. China Chem. 62, 1561–1575 (2019). https://doi.org/10.1007/s11426-019-9575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9575-8

Keywords

Navigation