Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts

Abstract

Unlike energy efficiency and selectivity challenges, the kinetic effects of impure or intentionally mixed CO2 feeds on the catalytic reactivity of the direct electrochemical CO2 reduction reaction (CO2RR) have been poorly studied. Given that industrial CO2 feeds are often contaminated with CO, a closer investigation of the CO2RR under CO2/CO co-feed conditions is warranted. Here, we report mechanistic insights into the CO2RR reactivity of CO2/CO co-feeds on Cu-based nanocatalysts. Kinetic isotope-labelling experiments—performed in an operando differential electrochemical mass spectrometry capillary flow cell with millisecond time resolution—showed an unexpected enhanced production of C2H4, with a yield increase of almost 50%, from a cross-coupled 12CO213CO reactive pathway. The results suggest the absence of site competition between CO2 and CO molecules on the reactive surface at the reactant-specific sites. The practical significance of sustained local interfacial CO partial pressures under CO2 depletion is demonstrated by metallic/non-metallic Cu/Ni–N-doped carbon tandem catalysts. Our findings show the mechanistic origin of improved C2 product formation under co-feeding, but also highlight technological opportunities of impure CO2/CO process feeds for H2O/CO2 co-electrolysers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphological, structural and elemental characterizations of CuOx NPs employed in this study.
Fig. 2: Electrocatalytic performance detected by on-line gas chromatography in the H-cell.
Fig. 3: Quantitative deconvolution of the relative contributions of competing CO–CO dimerization reaction pathways to ethylene using an operando DEMS capillary flow cell system.
Fig. 4: Mechanistic hypotheses of enhanced ethylene production under CO2/CO reactant co-feeds, and the realization of enhanced ethylene production using internal CO2/CO self-feeding bifunctional tandem catalyst designs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

    Article  Google Scholar 

  2. Armstrong, R. C. et al. The frontiers of energy. Nat. Energy 1, 15020 (2016).

    Article  Google Scholar 

  3. Rendón-Calle, A., Builes, S. & Calle-Vallejo, F. A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Curr. Opin. Electrochem. 9, 158–165 (2018).

    Article  Google Scholar 

  4. Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

    Article  CAS  Google Scholar 

  5. Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Article  CAS  Google Scholar 

  6. Handoko, A. D. et al. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C. 120, 20058–20067 (2016).

    Article  CAS  Google Scholar 

  7. Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Article  CAS  Google Scholar 

  8. Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Article  Google Scholar 

  9. Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2018).

    Article  Google Scholar 

  10. Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 85, 2309–2326 (1989).

    Article  CAS  Google Scholar 

  11. Hori, Y., Kikuchi, K., Murata, A. & Suzuki, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencsrbonate solution. Chem. Lett. 15, 897–898 (1986).

    Article  Google Scholar 

  12. Dinh, C. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  13. Somorjai, G. A. Catalysis on the atomic scale. Catal. Rev. 18, 173–197 (1978).

    Article  CAS  Google Scholar 

  14. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    Article  CAS  Google Scholar 

  15. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  16. Kortlever, R., Shen, J., Schouten, K., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  Google Scholar 

  17. Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

    Article  CAS  Google Scholar 

  18. Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    Article  CAS  Google Scholar 

  19. Mackay, D. & Shui, W. Y. A critical review of Henry’s law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10, 1175–1199 (1981).

    Article  CAS  Google Scholar 

  20. Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

    Article  CAS  Google Scholar 

  21. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

    Article  CAS  Google Scholar 

  22. Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

    Article  CAS  Google Scholar 

  23. Wang, X., Varela, A. S., Bergmann, A., Kühl, S. & Strasser, P. Catalyst particle density controls hydrocarbon product selectivity in CO2 electroreduction on CuOx. ChemSusChem 10, 4642–4649 (2017).

    Article  CAS  Google Scholar 

  24. Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. 125, 7423–7426 (2013).

    Article  Google Scholar 

  25. Pérez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. 129, 3675–3678 (2017).

    Article  Google Scholar 

  26. Schouten, K., Kwon, Y., van der Ham, C., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    Article  CAS  Google Scholar 

  27. Heyes, J., Dunwell, M. & Xu, B. CO2 reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. J. Phys. Chem. C. 120, 17334–17341 (2016).

    Article  CAS  Google Scholar 

  28. Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015).

    Article  CAS  Google Scholar 

  29. Kas, R. et al. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16, 12194–12201 (2014).

    Article  CAS  Google Scholar 

  30. Schreier, M., Yoon, Y., Jackson, M. N. & Surendranath, Y. Competition between H and CO for active sites governs copper-mediated electrosynthesis of hydrocarbon fuels. Angew. Chem. Int. Ed. 57, 10221–10225 (2018).

    Article  CAS  Google Scholar 

  31. Huang, J., Mensi, M., Oveisi, E., Mantella, V. & Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019).

    Article  CAS  Google Scholar 

  32. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  33. Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    Article  CAS  Google Scholar 

  34. Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

    Article  Google Scholar 

  35. Möller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the EnCO2re project. P.S., X.W and W.J. are grateful for partial support from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung) under grant no. 03SF0523A–“CO2EKAT”. The authors thank S. Selve and U. Gernert at Zentraleinrichtung für Elektronenmikroskopie and I. Ohnishi at JEOL Ltd for support with the microscopy measurements. A.B. and J.R. acknowledge research grant no. 9455 from VILLUM FONDEN (V-SUSTAIN) and the Innovation Fund Denmark (grand solution ProActivE 5124-00003A). P.S. acknowledges support from the Cluster of Excellence “UniSysCat” funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Contributions

X.W., J.F.d.A. and P.S. conceived and designed the project and wrote the manuscript. X.W. carried out the materials synthesis, characterization and electrochemical evaluation. J.F.d.A. conducted the DEMS measurement and analysed the results. W.J. and A.B. participated in the discussion of the electrochemical results and reaction mechanism sections. H.S. performed the HE-XRD measurement and provided help with the data analysis. X.W. and S.K. performed the TEM characterizations. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Peter Strasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1–5, Figs. 1–25, experimental details and refs. 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., de Araújo, J.F., Ju, W. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019). https://doi.org/10.1038/s41565-019-0551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0551-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing