Skip to main content
Log in

3D-printed optical-electronic integrated devices

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The monolithic incorporation of electrical and optical components is critically important for achieving high-speed on-chip signal processing, but yet hard to satisfy the explosive growth in the demands on bandwidth and information density. Three-dimensional (3D) circuits, which are desirable for their improved performance in data handling, are ideal candidates to simultaneously promise high-capacity computing with improved speed and energy efficiency. In such highly integrated circuits, however, the selective electrical modulation of light signals is still difficult to achieve owing to the lack of controllable integration of microscale optical functional devices and modulation units. In this work, we demonstrate an electrically modulated microlaser module on a 3D-integrated microsystem composed of a dye-doped polymeric microcavity and an underneath microscale electrical heating circuit. The lasing mode was modulated based on electrical heating-assisted thermo-optic response of the polymeric matrices, which were further fabricated into coupled microdisks, yielding wavelength-tunable single-mode microlasers with selective electrical modulation. On this basis, a prototype of electrically controlled microlaser module with reduced signal crosstalk was achieved. The results will provide a useful enlightenment for the rational design of novel tunable optical devices with more complicated functionalities under far-field regulation, paving the way for the on-chip optoelectronic integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davoyan A, Engheta N. Nat Commun, 2014, 5: 5250

    Article  Google Scholar 

  2. Xu Q, Schmidt B, Pradhan S, Lipson M. Nature, 2005, 435: 325–327

    Article  CAS  Google Scholar 

  3. High AA, Novitskaya EE, Butov LV, Hanson M, Gossard AC. Science, 2008, 321: 229–231

    Article  CAS  Google Scholar 

  4. Cui QH, Peng Q, Luo Y, Jiang Y, Yan Y, Wei C, Shuai Z, Sun C, Yao J, Zhao YS. Sci Adv, 2018, 4: eaap9861

    Article  Google Scholar 

  5. Guo P, Hu W, Zhang Q, Zhuang X, Zhu X, Zhou H, Shan Z, Xu J, Pan A. Adv Mater, 2014, 26: 2844–2849

    Article  CAS  Google Scholar 

  6. Huang Y, Zhang Q. Sci China Chem, 2018, 61: 1351–1352

    Article  CAS  Google Scholar 

  7. Nam SW, Jiang X, Xiong Q, Ham D, Lieber CM. Proc Natl Acad Sci USA, 2009, 106: 21035–21038

    Article  CAS  Google Scholar 

  8. Pirovano A, Schuegraf K. Nat Nanotech, 2010, 5: 177–178

    Article  CAS  Google Scholar 

  9. Li L, Lin H, Qiao S, Zou Y, Danto S, Richardson K, Musgraves JD, Lu N, Hu J. Nat Photon, 2014, 8: 643–649

    Article  CAS  Google Scholar 

  10. Shulaker MM, Hills G, Park RS, Howe RT, Saraswat K, Wong HSP, Mitra S. Nature, 2017, 547: 74–78

    Article  CAS  Google Scholar 

  11. Greytak AB, Barrelet CJ, Li Y, Lieber CM. Appl Phys Lett, 2005, 87: 151103

    Article  Google Scholar 

  12. Enami Y, Derose CT, Mathine D, Loychik C, Greenlee C, Norwood RA, Kim TD, Luo J, Tian Y, Jen AKY, Peyghambarian N. Nat Photon, 2007, 1: 180–185

    Article  Google Scholar 

  13. Camposeo A, Del Carro P, Persano L, Pisignano D. Adv Mater, 2012, 24: OP221–OP225

    Article  CAS  Google Scholar 

  14. Xiong C, Pernice WHP, Tang HX. Nano Lett, 2012, 12: 3562–3568

    Article  CAS  Google Scholar 

  15. Deng GW, Bo SH, Zhou TT, Zhang R, Liu JL, Liu XH, Zhen Z, Qiu L. Sci China Chem, 2013, 56: 169–173

    Article  CAS  Google Scholar 

  16. Kawata S, Sun HB, Tanaka T, Takada K. Nature, 2001, 412: 697–698

    Article  CAS  Google Scholar 

  17. Fang G, Cao H, Cao L, Duan X. Adv Mater Technol, 2018, 3: 1700271

    Article  Google Scholar 

  18. Lewis JA, Ahn BY. Nature, 2015, 518: 42–43

    Article  CAS  Google Scholar 

  19. Dietrich PI, Blaicher M, Reuter I, Billah M, Hoose T, Hofmann A, Caer C, Dangel R, Offrein B, Troppenz U, Moehrle M, Freude W, Koos C. Nat Photon, 2018, 12: 241–247

    Article  CAS  Google Scholar 

  20. Schumann M, Bückmann T, Gruhler N, Wegener M, Pernice W. Light Sci Appl, 2014, 3: e175

    Article  CAS  Google Scholar 

  21. Kuehne AJC, Gather MC. Chem Rev, 2016, 116: 12823–12864

    Article  CAS  Google Scholar 

  22. Ta VD, Chen R, Sun HD. Adv Mater, 2012, 24: OP60–OP64

    Article  CAS  Google Scholar 

  23. Wei C, Liu SY, Zou CL, Liu Y, Yao J, Zhao YS. J Am Chem Soc, 2015, 137: 62–65

    Article  CAS  Google Scholar 

  24. Wang Y, Ta VD, Leck KS, Tan BHI, Wang Z, He T, Ohl CD, Demir HV, Sun H. Nano Lett, 2017, 17: 2640–2646

    Article  CAS  Google Scholar 

  25. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat Mater, 2010, 9: 101–113

    Article  Google Scholar 

  26. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  Google Scholar 

  27. Gu F, Zhang L, Yin X, Tong L. Nano Lett, 2008, 8: 2757–2761

    Article  CAS  Google Scholar 

  28. Liu HL, Wang ST. Sci China Chem, 2014, 57: 552–557

    Article  CAS  Google Scholar 

  29. Humar M, Ravnik M, Pajk S, Muševič I. Nat Photon, 2009, 3: 595–600

    Article  CAS  Google Scholar 

  30. Döring S, Kollosche M, Rabe T, Stumpe J, Kofod G. Adv Mater, 2011, 23: 4265–4269

    Article  Google Scholar 

  31. Thompson C, Saraf RF, Jordan-Sweet JL. Langmuir, 1997, 13: 7135–7140

    Article  CAS  Google Scholar 

  32. Burek MJ, Chu Y, Liddy MSZ, Patel P, Rochman J, Meesala S, Hong W, Quan Q, Lukin MD, Lončar M. Nat Commun, 2014, 5: 5718

    Article  CAS  Google Scholar 

  33. Zhao YS, Zhan P, Kim J, Sun C, Huang J. ACS Nano, 2010, 4: 1630–1636

    Article  CAS  Google Scholar 

  34. Zhang Z, Zhao P, Lin P, Sun F. Polymer, 2006, 47: 4893–4896

    Article  CAS  Google Scholar 

  35. Lin X, Ling T, Subbaraman H, Guo LJ, Chen RT. Opt Express, 2013, 21: 2110–2117

    Article  CAS  Google Scholar 

  36. Dong H, Wei Y, Zhang W, Wei C, Zhang C, Yao J, Zhao YS. J Am Chem Soc, 2016, 138: 1118–1121

    Article  CAS  Google Scholar 

  37. Di Benedetto F, Camposeo A, Pagliara S, Mele E, Persano L, Stabile R, Cingolani R, Pisignano D. Nat Nanotech, 2008, 3: 614–619

    Article  CAS  Google Scholar 

  38. Xu J, Ma L, Guo P, Zhuang X, Zhu X, Hu W, Duan X, Pan A. J Am Chem Soc, 2012, 134: 12394–12397

    Article  CAS  Google Scholar 

  39. Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Nano Lett, 2014, 14: 5995–6001

    Article  CAS  Google Scholar 

  40. Fan F, Turkdogan S, Liu Z, Shelhammer D, Ning CZ. Nat Nanotech, 2015, 10: 796–803

    Article  CAS  Google Scholar 

  41. Eaton SW, Fu A, Wong AB, Ning CZ, Yang P. Nat Rev Mater, 2016, 1: 16028

    Article  CAS  Google Scholar 

  42. Dong H, Zhang C, Liu Y, Yan Y, Hu F, Zhao YS. Angew Chem Int Ed, 2018, 57: 3108–3112

    Article  CAS  Google Scholar 

  43. Takazawa K, Inoue J, Mitsuishi K, Takamasu T. Adv Mater, 2011, 23: 3659–3663

    Article  CAS  Google Scholar 

  44. Yang S, Wang Y, Sun H. Adv Opt Mater, 2015, 3: 1136–1162

    Article  CAS  Google Scholar 

  45. Zhang C, Zou CL, Zhao Y, Dong CH, Wei C, Wang H, Liu Y, Guo GC, Yao J, Zhao YS. Sci Adv, 2015, 1: e1500257

    Article  Google Scholar 

  46. Zhang Q, Su R, Liu X, Xing J, Sum TC, Xiong Q. Adv Funct Mater, 2016, 26: 6238–6245

    Article  CAS  Google Scholar 

  47. Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao YS. Chem Commun, 2017, 53: 3102–3105

    Article  CAS  Google Scholar 

  48. Diemeer MBJ. Opt Mater, 1998, 9: 192–200

    Article  CAS  Google Scholar 

  49. Yilmaz H, Pena-Francesch A, Shreiner R, Jung H, Belay Z, Demirel MC, Özdemir SK, Yang L. ACS Photonics, 2017, 4: 2179–2186

    Article  CAS  Google Scholar 

  50. Armani D, Min B, Martin A, Vahala KJ. Appl Phys Lett, 2004, 85: 5439–5441

    Article  CAS  Google Scholar 

  51. Zhang Z, Keil N. Optics Commun, 2016, 362: 101–114

    Article  CAS  Google Scholar 

  52. Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L. Nano Lett, 2011, 11: 1122–1126

    Article  CAS  Google Scholar 

  53. Gao H, Fu A, Andrews SC, Yang P. Proc Natl Acad Sci USA, 2013, 110: 865–869

    Article  CAS  Google Scholar 

  54. Ta VD, Chen R, Sun H. Adv Opt Mater, 2014, 2: 220–225

    Article  Google Scholar 

  55. Zhang C, Zou CL, Dong H, Yan Y, Yao J, Zhao YS. Sci Adv, 2017, 3: e1700225

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2017YFA0204502), and the National Natural Science Foundation of China (21533013, 21790364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sheng Zhao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lin, X., Wei, C. et al. 3D-printed optical-electronic integrated devices. Sci. China Chem. 62, 1398–1404 (2019). https://doi.org/10.1007/s11426-019-9503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9503-0

Keywords

Navigation