Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-atherosclerotic causes of acute coronary syndromes

Abstract

Atherosclerosis and plaque disruption have a central pathological role in the majority of patients who present with an acute coronary syndrome (ACS), but non-atherosclerotic processes are also important contributors to a substantial number of ACS events and require different diagnostic and therapeutic strategies. In the absence of obstructive coronary artery disease, intravascular imaging techniques might be needed to delineate the underlying aetiology, together with a high index of suspicion for other important causes of ACS. In this Review, we discuss five non-atherosclerotic causes of ACS, including spontaneous coronary artery dissection, coronary artery embolism, vasospasm, myocardial bridging and stress-induced cardiomyopathy (Takotsubo syndrome). Important diagnostic findings, management strategies and prognostic data for these non-atherosclerotic mechanisms of ACS are reviewed.

Key points

  • Non-atherosclerotic mechanisms contribute to a substantial number of acute coronary syndrome (ACS) events and require specific diagnostic and therapeutic strategies.

  • Spontaneous coronary artery dissection is most common in younger women, and the preferred strategy of conservative management carries an important risk of early clinical deterioration.

  • Coronary embolus can lead to ACS through direct, paradoxical or iatrogenic mechanisms.

  • Coronary vasospasm can occur at the epicardial or microvascular level, and invasive coronary vasomotion testing can improve diagnosis.

  • Myocardial bridging is often asymptomatic but can lead to ACS in an important subset of patients; invasive physiological testing might be necessary for diagnosis.

  • Stress-induced cardiomyopathy (Takotsubo syndrome) is frequently associated with endothelial dysfunction and can acutely cause outflow tract obstruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Angiographic findings in spontaneous coronary artery dissection.
Fig. 2: Early evolution of spontaneous coronary artery dissection.
Fig. 3: Coronary embolus resulting in inferolateral ST-segment elevation myocardial infarction.
Fig. 4: Coronary vasospasm presenting as unstable angina.
Fig. 5: Myocardial bridging of the LAD.
Fig. 6: Ventriculography of stress-induced cardiomyopathy.

Similar content being viewed by others

References

  1. Arbustini, E. et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82, 269–272 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Higuma, T. et al. A combined optical coherence tomography and intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patient with ST-segment elevation myocardial infarction: incidence, morphologic characteristics, and outcomes after percutaneous coronary intervention. JACC Cardiovasc. Interv. 8, 1166–1176 (2015).

    PubMed  Google Scholar 

  3. Davies, M. J. et al. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N. Engl. J. Med. 310, 1137–1140 (1984).

    CAS  PubMed  Google Scholar 

  4. Hochman, J. S. et al. Sex, clinical presentation, and outcome in patients with acute coronary syndromes. N. Engl. J. Med. 341, 226–232 (1999).

    CAS  PubMed  Google Scholar 

  5. Gehrie, E. R. et al. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines Quality Improvement Initiative. Am. Heart J. 158, 688–694 (2009).

    PubMed  Google Scholar 

  6. Chokshi, N. P. et al. Sex and race are associated with the absence of epicardial coronary artery obstructive disease at angiography in patient with acute coronary syndromes. Clin. Cardiol. 33, 495–501 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Roe, M. T. et al. Clinical and therapeutic profile of patients presenting with acute coronary syndromes who do not have significant coronary artery disease. The platelet glycoprotein IIb/IIIa in unstable angina: receptor suppression using integrilin therapy trial investigators. Circulation 102, 1101–1106 (2000).

    CAS  PubMed  Google Scholar 

  8. Emond, M. et al. Long-term survival of medically treat patients in the Coronary Artery Surgery Study (CASS) registry. Circulation 90, (2645–2657 (1994).

    Google Scholar 

  9. Patel, M. R. et al. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 362, 886–895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tweet, M. S. et al. Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation 126, 579–588 (2012).

    PubMed  Google Scholar 

  11. Hayes, S. N. et al. Spontaneous coronary artery dissection: current state of the science: a Scientific Statement from the American Heart Association. Circulation 137, e523–e557 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Tweet, M. S. et al. Spontaneous coronary artery dissection: a disease-specific, social networking community-initiated study. Mayo Clin. Proc. 86, 845–850 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Mortensen, K. H. et al. Spontaneous coronary artery dissection: a Western Denmark Heart Registry study. Catheter. Cardiovasc. Interv. 74, 710–717 (2009).

    CAS  PubMed  Google Scholar 

  14. Vanzetto, G. et al. Prevalence, therapeutic management, and medium-term prognosis of spontaneous coronary artery dissection: results from a database of 11,605 patients. Eur. J. Cardiothorac. Surg. 35, 250–254 (2009).

    PubMed  Google Scholar 

  15. Nishiguchi, T. et al. Prevalence of spontaneous coronary artery dissection in young patients with acute coronary syndrome. Eur. Heart J. Acute Cardiovasc. Care 5, 263–270 (2016).

    PubMed  Google Scholar 

  16. Nakashimia, T. et al. Prognostic impact of spontaneous coronary artery dissection in young female patients with acute myocardial infarction: a report from the Angina Pectoris-Myocardial Infarction Multicenter Investigators in Japan. Int. J. Cardiol. 207, 341–348 (2016).

    Google Scholar 

  17. Rashid, H. N. et al. Incidence and characterization of spontaneous coronary artery dissection as a cause of acute coronary syndrome: a single-centre Australian experience. Int. J. Cardiol. 202, 336–338 (2016).

    PubMed  Google Scholar 

  18. Saw, J. et al. Spontaneous coronary artery dissection: association with predisposing arteriopathies and precipitating stressors and cardiovascular outcomes. Circ. Cardiovasc. Interv. 7, 645–655 (2014).

    PubMed  Google Scholar 

  19. Saw, J. et al. Coronary angiogram classification of spontaneous coronary artery dissection. Catheter. Cardiovasc. Interv. 84, 1115–1122 (2014).

    PubMed  Google Scholar 

  20. Fahmy, P. et al. Pre-disposing and precipitating factors in men with spontaneous coronary artery dissection. JACC Cardiovasc. Interv. 9, 866–868 (2016).

    PubMed  Google Scholar 

  21. Prasad, M. et al. Prevalence of extracoronary vascular abnormalities and fibromuscular dysplasia in patients with spontaneous coronary artery dissection. Am. J. Cardiol. 115, 1672–1677 (2015).

    PubMed  Google Scholar 

  22. Saw, J. et al. Spontaneous coronary artery dissection: prevalence of predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. JACC Cardiovasc. Interv. 6, 44–52 (2013).

    PubMed  Google Scholar 

  23. Rogowski, S. et al. Spontaneous coronary artery dissection: angiographic follow-up and long-term clinical outcome in a predominantly medically treated population. Catheter. Cardiovasc. Interv. 89, 59–68 (2017).

    PubMed  Google Scholar 

  24. Alfonso, F. et al. Spontaneous coronary artery dissection: long-term follow-up of a large series of patients prospectively managed with a “conservative” therapeutic strategy. JACC Cardiovasc. Interv. 5, 1062–1070 (2012).

    PubMed  Google Scholar 

  25. Tweet, M. S. et al. Spontaneous coronary artery dissection associated with pregnancy. J. Am. Coll. Cardiol. 70, 426–435 (2017).

    PubMed  Google Scholar 

  26. Liang, J. J. et al. A novel application of CT angiography to detect extracoronary vascular abnormalities in patients with spontaneous coronary artery dissection. J. Cardiovasc. Comput. Tomogr. 8, 189–197 (2014).

    PubMed  Google Scholar 

  27. Schievink, W. I. Spontaneous dissection of the carotid and vertebral arteries. N. Engl. J. Med. 344, 898–906 (2001).

    CAS  PubMed  Google Scholar 

  28. Volker, W. et al. The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection. Neurology 76, 1463–1471 (2011).

    CAS  PubMed  Google Scholar 

  29. Alfonso, F. et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J. Am. Coll. Cardiol. 59, 1073–1079 (2012).

    PubMed  Google Scholar 

  30. Jackson, R. et al. Spontaneous coronary artery dissection: pathophysiological insights from optical coherence tomography. JACC Cardiovasc. Imaging https://doi.org/10.1016/j.jcmg.2019.01.015 (2019).

    Article  PubMed  Google Scholar 

  31. Waterbury, T. M. et al. Early natural history of spontaneous coronary artery dissection. Circ. Cardiovasc. Interv. 11, e006772 (2018).

    PubMed  Google Scholar 

  32. Kwon, T. G. et al. Proliferation of coronary adventitial vasa vasorum in patients with spontaneous coronary artery dissection. JACC Cardiovasc. Imaging 9, 891–892 (2016).

    PubMed  Google Scholar 

  33. Waterbury, T. M. et al. Coronary endothelial function and spontaneous coronary artery dissection. Eur. Heart J. Acute Cardiovasc. Care https://doi.org/10.1177/2048872618795255 (2018).

    Article  PubMed  Google Scholar 

  34. White, S. K. et al. Prevalence of coronary vasospasm using coronary reactivity testing in patients with spontaneous coronary artery dissection. Am. J. Cardiol. 123, 1812–1815 (2019).

    Google Scholar 

  35. Eleid, M. F. et al. Coronary artery tortuosity in spontaneous coronary artery dissection: angiographic characteristics and clinical implications. Circ. Cardiovasc. Interv. 7, 656–662 (2014).

    PubMed  Google Scholar 

  36. Eleid, M. F. et al. Spontaneous coronary artery dissection: challenges of coronary computed tomography angiography. Eur. Heart J. Acute Cardiovasc. Care 7, 609–613 (2017).

    PubMed  Google Scholar 

  37. Tweet, M. S. et al. Spontaneous coronary artery dissection: acute findings on coronary computed tomography angiography. Eur. Heart J. Acute Cardiovasc. Care 8, 467–475 (2019).

    PubMed  Google Scholar 

  38. Adlam, D. et al. European Society of Cardiology, Acute Cardiovascular Care Association, SCAD Study Group: a position paper on spontaneous coronary artery dissection. Eur. Heart J. 39, 3353–3368 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Tweet, M. S. et al. Spontaneous coronary artery dissection: revascularization versus conservative therapy. Circ. Cardiovasc. Interv. 7, 777–786 (2014).

    PubMed  Google Scholar 

  40. Lettieri, C. et al. Management and long-term prognosis of spontaneous coronary artery dissection. Am. J. Cardiol. 116, 66–73 (2015).

    PubMed  Google Scholar 

  41. Adlam, D. et al. Management of spontaneous coronary artery dissection in the primary percutaneous coronary intervention era. J. Invasive Cardiol. 22, 549–553 (2010).

    PubMed  Google Scholar 

  42. Yumoto, K. et al. Successful treatment of spontaneous coronary artery dissection with cutting balloon angioplasty as evaluated with optical coherence tomography. JACC Cardiovasc. Interv. 7, 817–819 (2014).

    PubMed  Google Scholar 

  43. Alkhouli, M. et al. Coronary artery fenestration prior to stenting in spontaneous coronary artery dissection. Catheter. Cardiovasc. Interv. 88, e23–e27 (2016).

    PubMed  Google Scholar 

  44. Shibata, T. et al. Prevalence, clinical features, and prognosis of acute myocardial infarction attributable to coronary artery embolism. Circulation 132, 241–250 (2015).

    CAS  PubMed  Google Scholar 

  45. Raphael, C. E. et al. Coronary embolus: an underappreciated cause of acute coronary syndromes. JACC Cardiovasc. Interv. 11, 172–180 (2018).

    PubMed  Google Scholar 

  46. Cheng, T. O. Coronary embolism. Int. J. Cardiol. 136, 1–3 (2009).

    PubMed  Google Scholar 

  47. Brunson, J. G. et al. Coronary embolism in bacterial endocarditis. Am. J. Pathol. 29, 689–701 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lacunza-Ruiz, F. J. et al. Coronary embolism and thrombosis of prosthetic mitral valve. JACC Cardiovasc. Interv. 7, e127–e128 (2014).

    PubMed  Google Scholar 

  49. Matsuyama, T. A. et al. Critical multi-organ emboli originating from collapsed, vulnerable caseous mitral annular calcification. Pathol. Int. 62, 496–499 (2012).

    PubMed  Google Scholar 

  50. El Sabbagh, A. et al. Cardiac myoxoma: the great mimicker. JACC Cardiovasc. Imaging 10, 203–206 (2017).

    PubMed  Google Scholar 

  51. Garachemani, A. et al. Paradoxical emboli through the patent foramen ovale as the suspected cause of myocardial and renal infarction in a 48-year-old woman. Catheter. Cardiovasc. Interv. 70, 1010–1012 (2007).

    PubMed  Google Scholar 

  52. Myers, P. O. et al. Impending paradoxical embolism. Chest 137, 164–170 (2010).

    PubMed  Google Scholar 

  53. Rallidis, L. S. et al. Myocardial infarction under the age of 36: prevalence of thrombophilic disorders. Thromb. Haemost. 90, 272–278 (2003).

    CAS  PubMed  Google Scholar 

  54. Dauvergne, C. et al. Acute myocardial infarction after left-heart catheterization in a patient with severe calcified bicuspid aortic stenosis. JACC Cardiovasc. Interv. 7, e5–e6 (2014).

    PubMed  Google Scholar 

  55. Prizel, K. R., Hutchins, G. M. & Bulkley, B. H. Coronary artery embolism and myocardial infarction. Ann. Intern. Med. 51, 155–161 (1978).

    Google Scholar 

  56. Protasiewick, M., Rojek, A., Gajek, J. & Mysiak, A. Cardiac arrest due to left circumflex coronary artery embolism as a complication of subtherapeutic oral anticoagulation in a patient with mitral and aortic mechanical valve prostheses. Postepy Kardiol. Interwencyjnej 9, 97–100 (2013).

    Google Scholar 

  57. Boekholdt, S. M. et al. Arterial thrombosis and the role of thrombophilia. Semin. Thromb. Hemost. 33, 588–596 (2007).

    CAS  PubMed  Google Scholar 

  58. Kaski, J. C. et al. Reappraisal of ischemic heart disease: fundamental role of coronary microvascular dysfunction in the pathogenesis of angina pectoris. Circulation 138, 1463–1480 (2018).

    PubMed  Google Scholar 

  59. Oliva, P. B., Potts, D. E. & Pluss, R. G. Coronary arterial spasm in Prinzmetal angina — documentation by coronary arteriography. N. Engl. J. Med. 288, 745–751 (1973).

    CAS  PubMed  Google Scholar 

  60. Picard, F. et al. Vasospastic angina: a literature review of current evidence. Arch. Cardiovasc. Dis. 112, 44–55 (2018).

    PubMed  Google Scholar 

  61. Prinzmetal, M. et al. Angina pectoris: I. A variant form of angina pectoris: preliminary report. Am. J. Med. 27, 375–388 (1959).

    CAS  PubMed  Google Scholar 

  62. Pristipino, C. et al. Major racial differences in coronary constrictor response between Japanese and Caucasians with recent myocardial infarction. Circulation 101, 1102–1108 (2000).

    CAS  PubMed  Google Scholar 

  63. Beltrame, J. F., Sasayama, S. & Maseri, A. Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. J. Am. Coll. Cardiol. 33, 1442–1452 (1999).

    CAS  PubMed  Google Scholar 

  64. Nakayama, N. et al. Clinical features and prognosis of patients with coronary spasm-induced non-ST-segment elevation acute coronary syndrome. J. Am. Heart Assoc. 3, e000795 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Ong, P. et al. Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (Coronary Artery Spasm in Patients with Acute Coronary Syndrome) study. J. Am. Coll. Cardiol. 52, 523–527 (2008).

    PubMed  Google Scholar 

  66. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ. J. 78, 2779–2801 (2014).

    Google Scholar 

  67. Hung, M. J., Hu, P. & Hung, M. Y. Coronary artery spasm: review and update. Int. J. Med. Sci. 11, 1161–1171 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Morita, S. et al. Differences and interactions between risk factors for coronary spasm and atherosclerosis — smoking, aging, inflammation, and blood pressure. Intern. Med. 53, 2663–2670 (2014).

    PubMed  Google Scholar 

  69. Sugiishi, M. & Takatsu, F. Cigarette smoking is a major risk factor for coronary spasm. Circulation 87, 76–79 (1993).

    CAS  PubMed  Google Scholar 

  70. Maseri, A. et al. Coronary artery spasm and vasoconstriction: the case for a distinction. Circulation 81, 1983–1991 (1990).

    CAS  PubMed  Google Scholar 

  71. Yasue, H. et al. Coronary artery spasm — clinical features, diagnosis, pathogenesis, and treatment. J. Cardiol. 51, 2–17 (2008).

    PubMed  Google Scholar 

  72. Kugiyama, K. et al. Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 94, 266–271 (1996).

    CAS  PubMed  Google Scholar 

  73. Kugiyama, K. et al. Nitric oxide-mediated flow-dependent dilation is impaired in coronary arteries in patients with coronary spastic angina. J. Am. Coll. Cardiol. 30, 920–926 (1997).

    CAS  PubMed  Google Scholar 

  74. Kandabashi, T. et al. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β. Circulation 101, 1319–1323 (2000).

    CAS  PubMed  Google Scholar 

  75. Shimokawa, H., Sunamura, S. & Satoh, K. RhoA/Rho-kinase in the cardiovascular system. Circ. Res. 118, 352–366 (2016).

    CAS  PubMed  Google Scholar 

  76. Egashira, K. et al. Basal release of endothelium-derived nitric oxide at site of spasm in patients with variant angina. J. Am. Coll. Cardiol. 27, 1444–1449 (1996).

    CAS  PubMed  Google Scholar 

  77. Miwa, K. et al. Increased oxidative stress with elevated serum thioredoxin level in patients with coronary spastic angina. Clin. Cardiol. 26, 177–181 (2003).

    PubMed  Google Scholar 

  78. Shin, E. S. et al. Thrombus and plaque erosion characterized by optical coherence tomography in patients with vasospastic angina. Rev. Esp. Cardiol. 70, 459–466 (2017).

    PubMed  Google Scholar 

  79. Ohyama, K. et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J. Am. Coll. Cardiol. 71, 414–425 (2018).

    PubMed  Google Scholar 

  80. Murase, Y. et al. Genetic risk and gene-environment interaction in coronary artery spasm in Japanese men and women. Eur. Heart J. 25, 970–977 (2004).

    PubMed  Google Scholar 

  81. Satake, K. et al. Relation between severity of magnesium deficiency and frequency of anginal attacks in men with variant angina. J. Am. Coll. Cardiol. 28, 897–902 (1996).

    CAS  PubMed  Google Scholar 

  82. Miwa, K. et al. Alterations of autonomic nervous activity preceding nocturnal variant angina: sympathetic augmentation with parasympathetic impairment. Am. Heart J. 135, 762–771 (1998).

    CAS  PubMed  Google Scholar 

  83. Burillo-Putze, G. et al. Incidence and impact of undisclosed cocaine use in emergency department chest pain and trauma patients. Int. J. Emerg. Med. 1, 169–172 (2008).

    PubMed  PubMed Central  Google Scholar 

  84. Lange, R. A. et al. Cocaine-induced coronary-artery vasoconstriction. N. Engl. J. Med. 321, 1557–1562 (1989).

    CAS  PubMed  Google Scholar 

  85. McCord, J. et al. Management of cocaine-associated chest pain and myocardial infarction: a scientific statement from the American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology. Circulation 117, 1897–1907 (2008).

    PubMed  Google Scholar 

  86. Moliterno, D. J. et al. Coronary-artery vasoconstriction induced by cocaine, cigarette smoking, or both. N. Engl. J. Med. 330, 454–459 (1994).

    CAS  PubMed  Google Scholar 

  87. Wilbert-Lampen, U. et al. Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine: reversal by coincubation with sigma-receptor antagonists. Circulation 98, 385–390 (1998).

    CAS  PubMed  Google Scholar 

  88. Mo, W. et al. Role of nitric oxide in cocaine-induced acute hypertension. Am. J. Hypertens. 11, 708–714 (1998).

    CAS  PubMed  Google Scholar 

  89. Shen, W.-K. et al. Sudden unexpected nontraumatic death in 54 young adults: a 30 year population-based study. Am. J. Cardiol. 76, 148–152 (1995).

    CAS  PubMed  Google Scholar 

  90. Hollander, J. E. et al. Prospective multicenter evaluation of cocaine-associated chest pain. cocaine associated chest pain (COCHPA) study group. Acad. Emerg. Med. 1, 330–339 (1994).

    CAS  PubMed  Google Scholar 

  91. Sohn, S. M. et al. Impact of alcohol drinking on acetylcholine-induced coronary artery spasm in Korean populations. Atherosclerosis 268, 163–169 (2018).

    CAS  PubMed  Google Scholar 

  92. El Menyar, A. A. Drug-induced myocardial infarction secondary to coronary artery spasm in teenagers and young adults. J. Postgrad. Med. 52, 51–56 (2006).

    PubMed  Google Scholar 

  93. Beltrame, J. F. et al. International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 38, 2565–2568 (2017).

    PubMed  Google Scholar 

  94. Araki, H. et al. Diurnal distribution of ST-segment elevation and related arrhythmias in patients with variant angina: a study by ambulatory ECG monitoring. Circulation 67, 995–1000 (1983).

    CAS  PubMed  Google Scholar 

  95. Nakamura, M., Takeshita, A. & Nose, Y. Clinical characteristics associated with myocardial infarction, arrhythmias, and sudden death in patients with vasospastic angina. Circulation 75, 1110–1116 (1987).

    CAS  PubMed  Google Scholar 

  96. Feldman, R. L. et al. Electrocardiographic changes with coronary artery spasm. Am. Heart J. 106, 1288–1297 (1983).

    CAS  PubMed  Google Scholar 

  97. Tanaka, A. et al. Conformational change in coronary artery structure assessed by optical coherence tomography in patients with vasospastic angina. J. Am. Coll. Cardiol. 58, 1608–1613 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. Yamagishi, M. et al. Intravascular ultrasound detection of atherosclerosis at the site of focal vasospasm in angiographically normal or minimally narrowed coronary segments. J. Am. Coll. Cardiol. 23, 352–357 (1994).

    CAS  PubMed  Google Scholar 

  99. MacAlpin, R. N. Some observations on and controversies about coronary arterial spasm. Int. J. Cardiol. 181, 389–398 (2015).

    PubMed  Google Scholar 

  100. Yasue, H. et al. Induction of coronary artery spasm by acetylcholine in patients with variant angina: possible role of the parasympathetic nervous system in the pathogenesis of coronary artery spasm. Circulation 74, 955–963 (1986).

    CAS  PubMed  Google Scholar 

  101. Okumura, K. et al. Sensitivity and specificity of intracoronary injection of acetylcholine for the induction of coronary artery spasm. J. Am. Coll. Cardiol. 12, 883–888 (1988).

    CAS  PubMed  Google Scholar 

  102. Heupler, F. A. Jr et al. Ergonovine maleate provocative test for coronary arterial spasm. Am. J. Cardiol. 41, 631–640 (1978).

    PubMed  Google Scholar 

  103. Takagi, Y. et al. Clinical implications of provocation tests for coronary artery spasm: safety, arrhythmic complications, and prognostic impact: multicentre registry study of the Japanese Coronary Spasm Association. Eur. Heart J. 34, 258–267 (2013).

    CAS  PubMed  Google Scholar 

  104. Inami, T. et al. Left ventricular dysfunction due to diffuse multiple vessel coronary artery spasm can be concealed in dilated cardiomyopathy. Eur. J. Heart Fail. 14, 1130–1138 (2012).

    CAS  PubMed  Google Scholar 

  105. Cho, S. W. et al. Clinical outcomes of vasospastic angina patients presenting with acute coronary syndrome. J. Am. Heart Assoc. 5, e004336 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Hung, M. J. et al. Coronary vasospasm-induced acute coronary syndrome complicated by life-threatening cardiac arrhythmias in patients without hemodynamically significant coronary artery disease. Int. J. Cardiol. 117, 37–44 (2007).

    PubMed  Google Scholar 

  107. Kundu, A. et al. Variant angina and aborted sudden cardiac death. Curr. Cardiol. Rep. 20, 26 (2018).

    PubMed  Google Scholar 

  108. Ishii, M. et al. Acetylcholine-provoked coronary spasm at site of significant organic stenosis predicts poor prognosis in patients with coronary vasospastic angina. J. Am. Coll. Cardiol. 66, 1105–1115 (2015).

    CAS  PubMed  Google Scholar 

  109. Task Force Members. et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 34, 2949–3003 (2013).

    Google Scholar 

  110. Severi, S. et al. Long-term prognosis of “variant” angina with medical treatment. Am. J. Cardiol. 46, 226–232 (1980).

    CAS  PubMed  Google Scholar 

  111. Nishigaki, K. et al. Prognostic effects of calcium channel blockers in patients with vasospastic angina — a meta-analysis. Circ. J. 74, 1943–1950 (2010).

    PubMed  Google Scholar 

  112. Lombardi, M. et al. Efficacy of isosorbide-5-mononitrate versus nifedipine in preventing spontaneous and ergonovine-induced myocardial ischaemia: a double-blind, placebo-controlled study. Eur. Heart J. 14, 845–851 (1993).

    CAS  PubMed  Google Scholar 

  113. Yasue, H. et al. Effects of a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, fluvastatin, on coronary spasm after withdrawal of calcium-channel blockers. J. Am. Coll. Cardiol. 51, 1742–1748 (2008).

    CAS  PubMed  Google Scholar 

  114. Masumoto, A. et al. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 105, 1545–1547 (2002).

    CAS  PubMed  Google Scholar 

  115. Kishida, H. & Murao, S. Effect of a new coronary vasodilator, nicorandil, on variant angina pectoris. Clin. Pharmacol. Ther. 42, 166–174 (1987).

    CAS  PubMed  Google Scholar 

  116. Teragawa, H. et al. The preventive effect of magnesium on coronary spasm in patients with vasospastic angina. Chest 118, 1690–1695 (2000).

    CAS  PubMed  Google Scholar 

  117. Miwa, K., Kambara, H. & Kawai, C. Effect of aspirin in large doses on attacks of variant angina. Am. Heart J. 105, 351–355 (1983).

    CAS  PubMed  Google Scholar 

  118. Park, J. Y. et al. Impact of low-dose aspirin on coronary artery spasm as assessed by intracoronary acetylcholine provocation test in Korean patients. J. Cardiol. 60, 187–191 (2012).

    PubMed  Google Scholar 

  119. Tanabe, Y. et al. Limited role of coronary angioplasty and stenting in coronary spastic angina with organic stenosis. J. Am. Coll. Cardiol. 39, 1120–1126 (2002).

    PubMed  Google Scholar 

  120. Ciçek, D., Kalay, N. & Müderrisoglu, H. Incidence, clinical characteristics, and 4-year follow-up of patients with isolated myocardial bridge: a retrospective, single-center, epidemiologic, coronary arteriographic follow-up study in southern Turkey. Cardiovasc. Revasc. Med. 12, 25–28 (2011).

    PubMed  Google Scholar 

  121. Möhlenkamp, S. et al. Update on myocardial bridging. Circulation 106, 2616–2622 (2002).

    PubMed  Google Scholar 

  122. Tsujita, K. et al. Impact of myocardial bridge on clinical outcome after coronary stent placement. Am. J. Cardiol. 103, 1344–1348 (2009).

    PubMed  Google Scholar 

  123. Migliore, F. et al. LAD coronary artery myocardial bridging and apical ballooning syndrome. JACC Cardiovasc. Imaging 6, 32–41 (2013).

    PubMed  Google Scholar 

  124. Migliore, F. et al. Myocardial bridging, apical ballooning syndrome and myocardial stunning: shall we connect the dots? Int. J. Cardiol. 168, 3109–3111 (2013).

    PubMed  Google Scholar 

  125. Zorzi, A. et al. Electrocardiographic J waves as a hyperacute sign of Takotsubo syndrome. J. Electrocardiol. 45, 353–356 (2012).

    PubMed  Google Scholar 

  126. Zorzi, A. et al. Relationship between repolarization abnormalities and myocardial edema in atypical Tako-Tsubo syndrome. J. Electrocardiol. 46, 348–351 (2013).

    PubMed  Google Scholar 

  127. Ishikawa, Y. et al. Anatomic properties of myocardial bridge predisposing to myocardial infarction. Circulation 120, 376–383 (2009).

    PubMed  Google Scholar 

  128. Kim, J. W. et al. Comparison of frequency of coronary spasm in Korean patients with versus without myocardial bridging. Am. J. Cardiol. 100, 1083–1086 (2007).

    PubMed  Google Scholar 

  129. Corban, M. T. et al. Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J. Am. Coll. Cardiol. 63, 2346–2355 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Tarantini, G. et al. Unmasking myocardial bridge-related ischemia by intracoronary functional evaluation. Circ. Cardiovasc. Interv. 11, e006247 (2018).

    PubMed  Google Scholar 

  131. Tarantini, G. et al. Left anterior descending artery myocardial bridging: a clinical approach. J. Am. Coll. Cardiol. 68, 2887–2899 (2016).

    PubMed  Google Scholar 

  132. Angelini, P., Trivellato, M., Donis, J. & Leachman, R. D. Myocardial bridges: a review. Prog. Cardiovasc. Dis. 26, 75–88 (1983).

    CAS  PubMed  Google Scholar 

  133. Escaned, J. et al. Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J. Am. Coll. Cardiol. 42, 226–233 (2003).

    PubMed  Google Scholar 

  134. Davies, J. E. et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N. Engl. J. Med. 376, 1824–1834 (2017).

    PubMed  Google Scholar 

  135. Götberg, M. et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N. Engl. J. Med. 376, 1813–1823 (2017).

    PubMed  Google Scholar 

  136. Konen, E. et al. The prevalence and anatomical patterns of intramuscular coronary arteries: a coronary computed tomography angiographic study. J. Am. Coll. Cardiol. 49, 587–593 (2007).

    PubMed  Google Scholar 

  137. Koo, H. J. et al. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int. J. Cardiovasc. Imaging 32 (Suppl. 1), 1–19 (2016).

    PubMed  Google Scholar 

  138. Yoon, Y. E. et al. Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve. JACC Cardiovasc. Imaging 5, 1088–1096 (2012).

    PubMed  Google Scholar 

  139. Sato, H., Tateishi, H. & Uchida, T. in Clinical Aspect of Myocardial Injury: Ischemia to Heart Failure Ch. 4 (eds Kodama, K., Haze, K. & Hori, M.) 56-64 (Kagakuhyoronsha Publishing Co, 1990).

  140. Pavin, D., Le Breton, H. & Daubert, C. Human stress cardiomyopathy mimicking acute myocardial syndrome. Heart 78, 509–511 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sharkey, S. W., Shear, W., Hodges, M. & Herzog, C. A. Reversible myocardial contraction abnormalities in patients with an acute noncardiac illness. Chest 114, 98–105 (1998).

    CAS  PubMed  Google Scholar 

  142. Desmet, W. J., Adriaenssens, B. F. & Dens, J. A. Apical ballooning of the left ventricle: first series in white patients. Heart 89, 1027–1031 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wittstein, I. S. et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N. Engl. J. Med. 352, 539–548 (2005).

    CAS  PubMed  Google Scholar 

  144. Lyon, A. R. et al. Current state of knowledge on Takotsubo syndrome: a position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 18, 8–27 (2016).

    PubMed  Google Scholar 

  145. Pelliccia, F. et al. Takotsubo is not a cardiomyopathy. Int. J. Cardiol. 254, 250–253 (2018).

    PubMed  Google Scholar 

  146. Templin, C. et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N. Engl. J. Med. 373, 929–938 (2015).

    CAS  PubMed  Google Scholar 

  147. Schneider, B. et al. Gender differences in the manifestation of Tako-Tsubo cardiomyopathy. Int. J. Cardiol. 166, 584–588 (2013).

    PubMed  Google Scholar 

  148. Redfors, B. et al. Mortality in takotsubo syndrome is similar to mortality in myocardial infarction — a report from the SWEDEHEART registry. Int. J. Cardiol. 185, 282–289 (2015).

    PubMed  Google Scholar 

  149. Deshmukh, A. et al. Prevalence of takotsubo cardiomyopathy in the united states. Am. Heart J. 164, 66–71.e1 (2012).

    PubMed  Google Scholar 

  150. Prasad, A., Lerman, A. & Rihal, C. S. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am. Heart J. 155, 408–417 (2008).

    PubMed  Google Scholar 

  151. Bybee, K. A. et al. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics  ST-segment elevation myocardial infarction. Ann. Intern. Med. 141, 858–865 (2004).

    PubMed  Google Scholar 

  152. Akashi, Y. J., Nef, H. M. & Lyon, A. R. Epidemiology and pathophysiology of Takotsubo syndrome. Nat. Rev. Cardiol. 12, 387–397 (2015).

    PubMed  Google Scholar 

  153. Ghadri, J. R. et al. Happy heart syndrome: role of positive emotional stress in takotsubo syndrome. Eur. Heart J. 37, 2823–2829 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. Gianni, M. et al. Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur. Heart J. 27, 1523–1529 (2006).

    PubMed  Google Scholar 

  155. Kosuge, M. & Kimura, K. Electrocardiographic findings of takotsubo cardiomyopathy as compared with those of anterior acute myocardial infarction. J. Electrocardiol. 47, 684–689 (2014).

    PubMed  Google Scholar 

  156. Frangieh, A. H. et al. ECG criteria to differentiate between Takotsubo (stress) cardiomyopathy and myocardial infarction. J. Am. Heart Assoc. 5, e003418 (2016).

    PubMed  PubMed Central  Google Scholar 

  157. Kurisu, S. et al. Time course of electrocardiographic changes in patients with tako-tsubo syndrome: comparison with acute myocardial infarction with minimal enzymatic release. Circ. J. 68, 77–81 (2004).

    PubMed  Google Scholar 

  158. Kato, K., Lyon, A. R., Ghadri, J.-R. & Templin, C. Takotsubo syndrome: aetiology, presentation and treatment. Heart 103, 1461–1469 (2017).

    PubMed  Google Scholar 

  159. Pelliccia, F., Kaski, J. C., Crea, F. & Camici, P. G. Pathophysiology of takotsubo syndrome. Circulation 135, 2426–2441 (2017).

    CAS  PubMed  Google Scholar 

  160. Naegele, M. et al. Endothelial function and sympathetic nervous system activity in patients with takotsubo syndrome. Int. J. Cardiol. 224, 226–230 (2016).

    CAS  PubMed  Google Scholar 

  161. Camici, P. G. & Crea, F. Microvascular angina: a women’s affair? Circ. Cardiovasc. Imaging 8, e003252 (2015).

    PubMed  Google Scholar 

  162. Ono, R. & Falcao, L. M. Takotsubo cardiomyopathy systematic review: pathophysiologic process, clinical presentation and diagnostic approach to Takotsubo cardiomyopathy. Int. J. Cardiol. 209, 196–205 (2016).

    PubMed  Google Scholar 

  163. Citro, R. et al. Clinical profile and in-hospital outcome of Caucasian patients with Takotsubo syndrome and right ventricular involvement. Int. J. Cardiol. 219, 455–461 (2016).

    PubMed  Google Scholar 

  164. Nguyen, T. H. et al. N-terminal pro-brain natriuretic protein levels in Takotsubo cardiomyopathy. Am. J. Cardiol. 108, 1316–1321 (2011).

    CAS  PubMed  Google Scholar 

  165. Song, B. G. et al. The clinical characteristics, laboratory parameters, electrocardiographic, and echocardiographic findings of reserve or inverted Takotsubo cardiomyopathy: comparison with mid or apical variant. Clin. Cardiol. 34, 693–699 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Frohlich, G. M. et al. Takotsubo cardiomyopathy has a unique cardiac biomarker profile: NT-proBNP/myoglobin and NT-proBNP/troponin T ratios for the differential diagnosis of acute coronary syndromes and stress induced cardiomyopathy. Int. J. Cardiol. 154, 328–332 (2012).

    PubMed  Google Scholar 

  167. Izumo, M. & Akashi, Y. J. Role of echocardiography for takotsubo cardiomyopathy: clinical and prognostic implications. Cardiovasc. Diagn. Ther. 8, 90–100 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. De Backer, O. et al. Prevalence, associated factors and management implications of left ventricular outflow tract obstruction in takotsubo cardiomyopathy: a two-year, two-center experience. BMC Cardiovasc. Disord. 14, 147 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. Warisawa, T., Naganuma, T. & Nakamura, S. Reversible microvascular dysfunction in takotsubo syndrome shown using index of microcirculatory resistance. Circ. J. 80, 750–752 (2016).

    PubMed  Google Scholar 

  170. Tornvall, P., Collste, O., Ehrenborg, E. & Jarnbert-Petterson, H. A case-control study of risk markers and mortality in takotsubo stress cardiomyopathy. J. Am. Coll. Cardiol. 67, 1931–1936 (2016).

    PubMed  Google Scholar 

  171. Stiermaier, T. et al. Prevalence and clinical significance of life-threatening arrhythmias in Takotsubo cardiomyopathy. J. Am. Coll. Cardiol. 65, 2148–2150 (2015).

    PubMed  Google Scholar 

  172. Icli, A. et al. Short-term warfarin treatment for apical thrombus in a patient with Takotsubo cardiomyopathy. Cardiovasc. J. Afr. 27, 1–3 (2016).

    Google Scholar 

  173. Bharathi, K. S., Kulkarni, S., Sadananda, K. S. & Gurudatt, C. L. Takotsubo cardiomyopathy precipitated by negative pressure pulmonary oedema following total thyroidectomy. Indian J. Anaesth. 60, 202–205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lu, D. Y. et al. Ventricular septal defect from takotsubo syndrome. Case Rep. Cardiol. 2016, 2693062 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. Jaguszewski, M. et al. Ventricular rupture in Takotsubo cardiomyopathy. Eur. Heart J. 33, 1027 (2012).

    PubMed  Google Scholar 

  176. Sharkey, S. W. et al. Natural history and expansive clinical profile of stress (Tako-Tsubo) cardiomyopathy. J. Am. Coll. Cardiol. 55, 333–341 (2010).

    PubMed  Google Scholar 

  177. Song, B. G. et al. The impact of stressor patterns on clinical features in patients with Tako-Tsubo cardiomyopathy: experiences of two tertiary cardiovascular centers. Clin. Cardiol. 35, E6–E13 (2012).

    PubMed  PubMed Central  Google Scholar 

  178. Roffi, M. et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 37, 267–315 (2016).

    CAS  PubMed  Google Scholar 

  179. Steg, H. et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force on the management of acute ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). Eur. Heart J. 33, 2569–2619 (2012).

    CAS  PubMed  Google Scholar 

  180. Amsterdam, E. A. et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 64, e139–e228 (2014).

    PubMed  Google Scholar 

  181. O’Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127, e362–e425 (2013).

    PubMed  Google Scholar 

  182. Isogai, T., Matsui, H., Tanaka, H., Fushimi, K. & Yasunaga, H. Early β-blocker use and in-hospital mortality in patients with Takotsubo cardiomyopathy. Heart 102, 1029–1035 (2016).

    PubMed  Google Scholar 

  183. Migliore, F. et al. Incidence and management of life-threatening arrhythmias in Takotsubo syndrome. Int. J. Cardiol. 166, 261–263 (2013).

    PubMed  Google Scholar 

  184. Bietry, R., Reyentovich, A. & Katz, S. D. Clinical management of Takotsubo cardiomyopathy. Heart Fail. Clin. 9, 177–186 (2013).

    PubMed  Google Scholar 

  185. Singh, K. et al. Systematic review and meta-analysis of incidence and correlates of recurrence of Takotsubo cardiomyopathy. Int. J. Cardiol. 174, 696–701 (2014).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.M.W. researched the data for the article, and all the authors wrote the manuscript. T.M.W., B.J.G. and R.G. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rajiv Gulati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waterbury, T.M., Tarantini, G., Vogel, B. et al. Non-atherosclerotic causes of acute coronary syndromes. Nat Rev Cardiol 17, 229–241 (2020). https://doi.org/10.1038/s41569-019-0273-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0273-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing