1932

Abstract

Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015724
2019-09-29
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015724.html?itemId=/content/journals/10.1146/annurev-virology-092818-015724&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Watson JD, Crick FHC. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–38
    [Google Scholar]
  2. 2. 
    Franklin RE. 1956. Structure of tobacco mosaic virus: location of the ribonucleic acid in the tobacco mosaic virus particle. Nature 177:928–30
    [Google Scholar]
  3. 3. 
    Holmes KC, Stubbs GJ, Mandelkow E, Gallwitz U 1975. Structure of tobacco mosaic virus at 6.7 Å resolution. Nature 254:192–96
    [Google Scholar]
  4. 4. 
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al. 2000. The Protein Data Bank. Nucleic Acids Res 28:235–42
    [Google Scholar]
  5. 5. 
    Huang Z. 2013. Brightness and coherence of synchrotron radiation and FELs. Proceedings, 4th International Particle Accelerator Conference, IPAC 2013, May 13–17, 2013, Shanghai, China Z Dai, C Petit-Jean-Genaz, VRW Schaa, C Zhang 16–20 Geneva, Switz: JACoW
    [Google Scholar]
  6. 6. 
    Weckert E. 2015. The potential of future light sources to explore the structure and function of matter. IUCrJ 2:230–45
    [Google Scholar]
  7. 7. 
    Schmüser P, Dohlus M, Rossbach J, Behrens C 2014. X-ray free-electron lasers: technical realization and experimental results. Free-Electron Lasers in the Ultraviolet and X-Ray Regime165–82 Cham, Switz: Springer, 2nd ed..
    [Google Scholar]
  8. 8. 
    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N et al. 2007. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1:336–42
    [Google Scholar]
  9. 9. 
    Chapman HN, Barty A, Bogan MJ, Boutet S, Frank M et al. 2006. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2:839–43
    [Google Scholar]
  10. 10. 
    Bogan MJ, Benner WH, Boutet S, Rohner U, Frank M et al. 2008. Single particle X-ray diffractive imaging. Nano Lett 8:310–16
    [Google Scholar]
  11. 11. 
    Emma P, Akre R, Arthur J, Bionta R, Bostedt C et al. 2010. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4:641–47
    [Google Scholar]
  12. 12. 
    Bocchetta CJ, Abrami A, Allaria E, Andrian I, Bacescu D et al. 2007. FERMI@Elettra: Conceptual Design Report Trieste, Italy: Sincrotrone Trieste
  13. 13. 
    Yabashi M, Tanaka H, Ishikawa T 2015. Overview of the SACLA facility. J. Synchrotron Radiat. 22:477–84
    [Google Scholar]
  14. 14. 
    Altarelli M, Brinkmann R, Chergui M, Decking W, Dobson B et al. 2006. The European X-ray Free-Electron Laser: Technical Design Report Hamburg, Ger: DESY XFEL Proj. Group
  15. 15. 
    Ganter R, Abela R, Braun HH, Garvey T, Patterson BD et al. 2010. SwissFEL Conceptual Design Report Villigen, Switz: Paul Scherrer Inst.
  16. 16. 
    Kang H-S, Kim KW, Ko IS 2015. Status of the PAL-XFEL construction. Proceedings, 64th International Particle Accelerator Conference, IPAC 2015, May 3–8, 2015, Richmond, VA2439–43 Geneva, Switz: JACoW
    [Google Scholar]
  17. 17. 
    Magdoff BS. 1953. Deterioration of the crystallinity of wet ribonuclease with exposure to X-radiation. Acta Crystallogr 6:801–2
    [Google Scholar]
  18. 18. 
    Owen RL, Rudino-Pinera E, Garman EF 2006. Experimental determination of the radiation dose limit for cryocooled protein crystals. PNAS 103:4912–17
    [Google Scholar]
  19. 19. 
    Meents A, Gutmann S, Wagner A, Schulze-Briese C 2010. Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. PNAS 107:1094–99
    [Google Scholar]
  20. 20. 
    Roedig P, Duman R, Sanchez-Weatherby J, Vartiainen I, Burkhardt A et al. 2016. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J. Appl. Crystallogr. 49:968–75
    [Google Scholar]
  21. 21. 
    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–57
    [Google Scholar]
  22. 22. 
    Gati C, Oberthuer D, Yefanov O, Bunker RD, Stellato F et al. 2017. Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. PNAS 114:2247–52
    [Google Scholar]
  23. 23. 
    Kühlbrandt W. 2014. The resolution revolution. Science 343:1443–44
    [Google Scholar]
  24. 24. 
    Seibert MM, Ekeberg T, Maia FR, Svenda M, Andreasson J et al. 2011. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470:78–81
    [Google Scholar]
  25. 25. 
    Gould EA. 1999. Methods for long-term virus preservation. Mol. Biotechnol. 13:57–66
    [Google Scholar]
  26. 26. 
    Miao J, Charalambous P, Kirz J, Sayre D 1999. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–44
    [Google Scholar]
  27. 27. 
    Miao J, Hodgson KO, Ishikawa T, Larabell CA, LeGros MA, Nishino Y 2003. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction. PNAS 100:110–12
    [Google Scholar]
  28. 28. 
    Song C, Jiang H, Mancuso A, Amirbekian B, Peng L et al. 2008. Quantitative imaging of single, unstained viruses with coherent x rays. Phys. Rev. Lett. 101:158101
    [Google Scholar]
  29. 29. 
    Ekeberg T, Svenda M, Abergel C, Maia FR, Seltzer V et al. 2015. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 114:098102
    [Google Scholar]
  30. 30. 
    Hantke MF, Hasse D, Maia FRNC, Ekeberg T, John K et al. 2014. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photonics 8:943–49
    [Google Scholar]
  31. 31. 
    Aquila A, Barty A, Bostedt C, Boutet S, Carini G et al. 2015. The linac coherent light source single particle imaging road map. Struct. Dyn. 2:041701
    [Google Scholar]
  32. 32. 
    Ferguson KR, Bucher M, Bozek JD, Carron S, Castagna JC et al. 2015. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22:492–97
    [Google Scholar]
  33. 33. 
    Liang M, Williams GJ, Messerschmidt M, Seibert MM, Montanez PA et al. 2015. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22:514–19
    [Google Scholar]
  34. 34. 
    Holton JM, Frankel KA. 2010. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. D Biol. Crystallogr. 66:393–408
    [Google Scholar]
  35. 35. 
    Ayyer K, Geloni G, Kocharyan V, Saldin E, Serkez S et al. 2015. Perspectives for imaging single protein molecules with the present design of the European XFEL. Struct. Dyn. 2:041702
    [Google Scholar]
  36. 36. 
    Daurer BJ, Okamoto K, Bielecki J, Maia FRNC, Mühlig K et al. 2017. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ 4:251–62
    [Google Scholar]
  37. 37. 
    Siewert F, Buchheim J, Boutet S, Williams GJ, Montanez PA et al. 2012. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry. Opt. Express 20:4525–36
    [Google Scholar]
  38. 38. 
    Li Y, Beck R, Huang T, Choi MC, Divinagracia M 2008. Scatterless hybrid metal–single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction. J. Appl. Crystallogr. 41:1134–39
    [Google Scholar]
  39. 39. 
    Dufresne EM, Dierker SB, Yin Z, Berman L 2009. Development of new apertures for coherent X-ray experiments. J. Synchrotron Radiat. 16:358–67
    [Google Scholar]
  40. 40. 
    Wiedorn MO, Awel S, Morgan AJ, Barthelmess M, Bean R et al. 2017. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers. J. Synchrotron Radiat. 24:1296–98
    [Google Scholar]
  41. 41. 
    Munke A, Andreasson J, Aquila A, Awel S, Ayyer K et al. 2016. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Sci. Data 3:160064
    [Google Scholar]
  42. 42. 
    Marvin Seibert M, Boutet S, Svenda M, Ekeberg T, Maia FRNC et al. 2010. Femtosecond diffractive imaging of biological cells. J. Phys. B Atomic Mol. Opt. Phys. 43:194015
    [Google Scholar]
  43. 43. 
    Seuring C, Ayyer K, Filippaki E, Barthelmess M, Longchamp JN et al. 2018. Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nat. Commun. 9:1836
    [Google Scholar]
  44. 44. 
    DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D et al. 2008. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 41:195505
    [Google Scholar]
  45. 45. 
    Ganan-Calvo AM, DePonte DP, Herrada MA, Spence JC, Weierstall U, Doak RB 2010. Liquid capillary micro/nanojets in free-jet expansion. Small 6:822–24
    [Google Scholar]
  46. 46. 
    Bielecki J, Hantke MF, Daurer BJ, Reddy HKN, Hasse D et al. 2018. Electrospray sample injection for single-particle imaging with X-ray lasers. bioRxiv 45345. https://doi.org/10.1101/453456
    [Crossref]
  47. 47. 
    Hantke MF, Bielecki J, Kulyk O, Westphal D, Larsson DSD et al. 2018. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCrJ 5:673–80
    [Google Scholar]
  48. 48. 
    Kirian RA, Awel S, Eckerskorn N, Fleckenstein H, Wiedorn M et al. 2015. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers. Struct. Dyn. 2:041717
    [Google Scholar]
  49. 49. 
    Awel S, Kirian RA, Eckerskorn N, Wiedorn MO, Horke DA et al. 2016. Visualizing aerosol-particle injection for diffractive-imaging experiments. Opt. Express 24:6507–21
    [Google Scholar]
  50. 50. 
    Awel S, Kirian RA, Wiedorn MO, Beyerlein KR, Roth N et al. 2018. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. J. Appl. Crystallogr. 51:133–39
    [Google Scholar]
  51. 51. 
    Roth N, Awel S, Horke DA, Küpper J 2018. Optimizing aerodynamic lenses for single-particle imaging. J. Aerosol Sci. 124:17–29
    [Google Scholar]
  52. 52. 
    Hutchins DK, Holm J, Addison SR 1991. Electrodynamic focusing of charged aerosol particles. Aerosol Sci. Technol. 14:389–405
    [Google Scholar]
  53. 53. 
    Eckerskorn N, Bowman R, Kirian RA, Awel S, Wiedorn M et al. 2015. Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum. Phys. Rev. Appl. 4:064001
    [Google Scholar]
  54. 54. 
    Wiedorn MO, Awel S, Morgan AJ, Ayyer K, Gevorkov Y et al. 2018. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ 5:574–84
    [Google Scholar]
  55. 55. 
    Koralek JD, Kim JB, Bruza P, Curry CB, Chen Z et al. 2018. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 9:1353
    [Google Scholar]
  56. 56. 
    Broennimann C, Eikenberry EF, Henrich B, Horisberger R, Huelsen G et al. 2006. The PILATUS 1M detector. J. Synchrotron Radiat. 13:120–30
    [Google Scholar]
  57. 57. 
    Cohen AE, Soltis SM, Gonzalez A, Aguila L, Alonso-Mori R et al. 2014. Goniometer-based femtosecond crystallography with X-ray free electron lasers. PNAS 111:17122–27
    [Google Scholar]
  58. 58. 
    Hartmann R, Epp S, Herrmann S, Holl P, Meidinger N et al. 2008. Large format pnCCDs as imaging detectors for X-ray free-electron-lasers. 2008 IEEE Nuclear Science Symposium Conference Record2590–95 New York: IEEE
    [Google Scholar]
  59. 59. 
    Koerner LJ, Philipp HT, Hromalik MS, Tate MW, Gruner SM 2009. X-ray tests of a Pixel Array Detector for coherent x-ray imaging at the Linac Coherent Light Source. J. Instrum. 4:P03001
    [Google Scholar]
  60. 60. 
    Mozzanica A, Bergamaschi A, Brueckner M, Cartier S, Dinapoli R et al. 2016. Characterization results of the JUNGFRAU full scale readout ASIC. J. Instrum. 11:C02047
    [Google Scholar]
  61. 61. 
    Leonarski F, Redford S, Mozzanica A, Lopez-Cuenca C, Panepucci E et al. 2018. Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat. Methods 15:799–804
    [Google Scholar]
  62. 62. 
    Allahgholi A, Becker J, Bianco L, Delfs A, Dinapoli R et al. 2015. AGIPD, a high dynamic range fast detector for the European XFEL. J. Instrum. 10:C01023
    [Google Scholar]
  63. 63. 
    Markovic B, Dragone A, Caragiulo P, Herbst R, Nishimura K et al. 2014. Design and characterization of the ePix100a: a low noise integrating pixel ASIC for LCLS detectors. 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC): 8–15 Nov. 20141–3 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64. 
    Mariani V, Morgan A, Yoon CH, Lane TJ, White TA et al. 2016. OnDA: online data analysis and feedback for serial X-ray imaging. J. Appl. Crystallogr. 49:1073–80
    [Google Scholar]
  65. 65. 
    Daurer BJ, Hantke MF, Nettelblad C, Maia FR 2016. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Crystallogr. 49:1042–47
    [Google Scholar]
  66. 66. 
    Bobkov SA, Teslyuk AB, Kurta RP, Gorobtsov OY, Yefanov OM et al. 2015. Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers. J. Synchrotron Radiat. 22:1345–52
    [Google Scholar]
  67. 67. 
    Hosseinizadeh A, Schwander P, Dashti A, Fung R, D'Souza RM, Ourmazd A 2014. High-resolution structure of viruses from random diffraction snapshots. Philos. Trans. R. Soc. B Biol. Sci. 369:20130326
    [Google Scholar]
  68. 68. 
    Loh NT, Elser V. 2009. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E 80:026705
    [Google Scholar]
  69. 69. 
    Ayyer K, Lan TY, Elser V, Loh ND 2016. Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging. J. Appl. Crystallogr. 49:1320–35
    [Google Scholar]
  70. 70. 
    Chapman HN, Barty A, Marchesini S, Noy A, Hau-Riege SP et al. 2006. High-resolution ab initio three-dimensional x-ray diffraction microscopy. J. Opt. Soc. Am. A 23:1179
    [Google Scholar]
  71. 71. 
    Shechtman Y, Eldar YC, Cohen O, Segev M 2013. Efficient coherent diffractive imaging for sparsely varying objects. Opt. Express 21:6327–38
    [Google Scholar]
  72. 72. 
    Martin AV, Loh ND, Hampton CY, Sierra RG, Wang F et al. 2012. Femtosecond dark-field imaging with an X-ray free electron laser. Opt. Express 20:13501–12
    [Google Scholar]
  73. 73. 
    Gorkhover T, Ulmer A, Ferguson K, Bucher M, Maia FRNC et al. 2018. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nat. Photon. 12:150–53
    [Google Scholar]
  74. 74. 
    Fox G, Stuart D, Acharya KR, Fry E, Rowlands D, Brown F 1987. Crystallization and preliminary X-ray diffraction analysis of foot-and-mouth disease virus. J. Mol. Biol. 196:591–97
    [Google Scholar]
  75. 75. 
    Chapman HN, Fromme P, Barty A, White TA, Kirian RA et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470:73–77
    [Google Scholar]
  76. 76. 
    White TA, Kirian RA, Martin AV, Aquila A, Nass K et al. 2012. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45:335–41
    [Google Scholar]
  77. 77. 
    Boutet S, Lomb L, Williams GJ, Barends TRM, Aquila A et al. 2012. High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–64
    [Google Scholar]
  78. 78. 
    Stellato F, Oberthur D, Liang M, Bean R, Gati C et al. 2014. Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–12
    [Google Scholar]
  79. 79. 
    Wiedorn MO, Oberthur D, Bean R, Schubert R, Werner N et al. 2018. Megahertz serial crystallography. Nat. Commun. 9:4025
    [Google Scholar]
  80. 80. 
    Grunbein ML, Bielecki J, Gorel A, Stricker M, Bean R et al. 2018. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 9:3487
    [Google Scholar]
  81. 81. 
    Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I et al. 2017. Pink-beam serial crystallography. Nat. Commun. 8:1281
    [Google Scholar]
  82. 82. 
    Lawrence RM, Conrad CE, Zatsepin NA, Grant TD, Liu H et al. 2015. Serial femtosecond X-ray diffraction of enveloped virus microcrystals. Struct. Dyn. 2:041720
    [Google Scholar]
  83. 83. 
    Weierstall U, James D, Wang C, White TA, Wang D et al. 2014. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5:3309
    [Google Scholar]
  84. 84. 
    Conrad CE, Basu S, James D, Wang D, Schaffer A et al. 2015. A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2:421–30
    [Google Scholar]
  85. 85. 
    Harrison SC, Strong RK, Schlesinger S, Schlesinger MJ 1992. Crystallization of Sindbis virus and its nucleocapsid. J. Mol. Biol. 226:277–80
    [Google Scholar]
  86. 86. 
    Tang J, Jose J, Chipman P, Zhang W, Kuhn RJ, Baker TS 2011. Molecular links between the E2 envelope glycoprotein and nucleocapsid core in Sindbis virus. J. Mol. Biol. 414:442–59
    [Google Scholar]
  87. 87. 
    Roedig P, Ginn HM, Pakendorf T, Sutton G, Harlos K et al. 2017. High-speed fixed-target serial virus crystallography. Nat. Methods 14:805–10
    [Google Scholar]
  88. 88. 
    Smyth M, Tate J, Hoey E, Lyons C, Martin S, Stuart D 1995. Implications for viral uncoating from the structure of bovine enterovirus. Nat. Struct. Mol. Biol. 2:224–31
    [Google Scholar]
  89. 89. 
    Goens SD, Botero S, Zemla A, Zhou CE, Perdue ML 2004. Bovine enterovirus 2: complete genomic sequence and molecular modelling of a reference strain and a wild-type isolate from endemically infected US cattle. J. Gen. Virol. 85:3195–203
    [Google Scholar]
  90. 90. 
    Roedig P, Vartiainen I, Duman R, Panneerselvam S, Stube N et al. 2015. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 5:10451
    [Google Scholar]
  91. 91. 
    Axford D, Owen RL, Aishima J, Foadi J, Morgan AW et al. 2012. In situ macromolecular crystallography using microbeams. Acta Crystallogr. D Biol. Crystallogr. 68:592–600
    [Google Scholar]
  92. 92. 
    Trillo-Muyo S, Jasilionis A, Domagalski MJ, Chruszcz M, Minor W et al. 2013. Ultratight crystal packing of a 10 kDa protein. Acta Crystallogr. D Biol. Crystallogr. 69:464–70
    [Google Scholar]
  93. 93. 
    Oberthuer D, Knoska J, Wiedorn MO, Beyerlein KR, Bushnell DA et al. 2017. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 7:44628
    [Google Scholar]
  94. 94. 
    Bartesaghi A, Aguerrebere C, Falconieri V, Banerjee S, Earl LA et al. 2018. Atomic resolution cryo-EM structure of β-galactosidase. Structure 26:848–56
    [Google Scholar]
  95. 95. 
    Frank J. 2017. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12:209–12
    [Google Scholar]
  96. 96. 
    Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S et al. 2017. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541:242–46
    [Google Scholar]
  97. 97. 
    Kupitz C, Olmos JL, Holl M, Tremblay L, Pande K et al. 2017. Structural enzymology using X-ray free electron lasers. Struct. Dyn. 4:044003
    [Google Scholar]
  98. 98. 
    Beyerlein KR, Dierksmeyer D, Mariani V, Kuhn M, Sarrou I et al. 2017. Mix-and-diffuse serial synchrotron crystallography. IUCrJ 4:769–77
    [Google Scholar]
  99. 99. 
    Olmos JL Jr, Pandey S, Martin-Garcia JM, Calvey G, Katz A et al. 2018. Enzyme intermediates captured “on the fly” by mix-and-inject serial crystallography. BMC Biol 16:59
    [Google Scholar]
  100. 100. 
    Ahlberg Gagnér V, Lundholm I, Garcia-Bonete M-J, Rodilla H, Friedman R et al. 2019. A distributed lattice of aligned atoms exists in a protein structure: a hierarchical clustering study of displacement parameters in bovine trypsin. bioRxiv 475889. https://doi.org/10.1101/475889
    [Crossref]
  101. 101. 
    Hekstra DR, White KI, Socolich MA, Henning RW, Srajer V, Ranganathan R 2016. Electric-field-stimulated protein mechanics. Nature 540:400–5
    [Google Scholar]
  102. 102. 
    Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM et al. 2011. Accessing protein conformational ensembles using room-temperature X-ray crystallography. PNAS 108:16247–52
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015724
Loading
/content/journals/10.1146/annurev-virology-092818-015724
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error