1932

Abstract

Influenza viruses are a leading cause of seasonal and pandemic respiratory illness. Influenza is a negative-sense single-stranded RNA virus that encodes its own RNA-dependent RNA polymerase (RdRp) for nucleic acid synthesis. The RdRp catalyzes mRNA synthesis, as well as replication of the virus genome (viral RNA) through a complementary RNA intermediate. Virus propagation requires the generation of these RNA species in a controlled manner while competing heavily with the host cell for resources. Influenza virus appropriates host factors to enhance and regulate RdRp activity at every step of RNA synthesis. This review describes such host factors and summarizes our current understanding of the roles they play in viral synthesis of RNA.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043339
2019-09-29
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092917-043339.html?itemId=/content/journals/10.1146/annurev-virology-092917-043339&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hsu MT, Parvin JD, Gupta S, Krystal M, Palese P 1987. Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. PNAS 84:8140–44
    [Google Scholar]
  2. 2. 
    Reich S, Guilligay D, Pflug A, Malet H, Berger I et al. 2014. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516:361–66
    [Google Scholar]
  3. 3. 
    Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S et al. 2015. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527:114–17
    [Google Scholar]
  4. 4. 
    Thierry E, Guilligay D, Kosinski J, Bock T, Gaudon S et al. 2016. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol. Cell 61:125–37
    [Google Scholar]
  5. 5. 
    te Velthuis AJ, Fodor E 2016. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14:479–93
    [Google Scholar]
  6. 6. 
    Fodor E, Pritlove DC, Brownlee GG 1994. The influenza virus panhandle is involved in the initiation of transcription. J. Virol. 68:4092–96
    [Google Scholar]
  7. 7. 
    Plotch SJ, Bouloy M, Ulmanen I, Krug RM 1981. A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–58
    [Google Scholar]
  8. 8. 
    te Velthuis AJW, Oymans J 2017. Initiation, elongation and realignment during influenza virus mRNA synthesis. J. Virol. 92:e01775-17
    [Google Scholar]
  9. 9. 
    Oymans J, te Velthuis AJW 2018. A mechanism for priming and realignment during influenza A virus replication. J. Virol. 92:e01773–17
    [Google Scholar]
  10. 10. 
    te Velthuis AJW, Robb NC, Kapanidis AN, Fodor E 2016. The role of the priming loop in influenza A virus RNA synthesis. Nat. Microbiol. 1:16029
    [Google Scholar]
  11. 11. 
    Ye Q, Krug RM, Tao YJ 2006. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444:1078–82
    [Google Scholar]
  12. 12. 
    Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E 2006. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J. Virol. 80:11911–19
    [Google Scholar]
  13. 13. 
    Gu W, Gallagher GR, Dai W, Liu P, Li R et al. 2015. Influenza A virus preferentially snatches noncoding RNA caps. RNA 21:2067–75
    [Google Scholar]
  14. 14. 
    Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T et al. 2008. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 15:500–6
    [Google Scholar]
  15. 15. 
    Honda A, Ueda K, Nagata K, Ishihama A 1988. RNA polymerase of influenza virus: role of NP in RNA chain elongation. J. Biochem. 104:1021–26
    [Google Scholar]
  16. 16. 
    Luo GX, Luytjes W, Enami M, Palese P 1991. The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. J. Virol. 65:2861–67
    [Google Scholar]
  17. 17. 
    Yamayoshi S, Watanabe M, Goto H, Kawaoka Y 2016. Identification of a novel viral protein expressed from the PB2 segment of influenza A virus. J. Virol. 90:444–56
    [Google Scholar]
  18. 18. 
    Deng T, Vreede FT, Brownlee GG 2006. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J. Virol. 80:2337–48
    [Google Scholar]
  19. 19. 
    York A, Hengrung N, Vreede FT, Huiskonen JT, Fodor E 2013. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. PNAS 110:E4238–45
    [Google Scholar]
  20. 20. 
    Jorba N, Coloma R, Ortin J 2009. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLOS Pathog 5:e1000462
    [Google Scholar]
  21. 21. 
    Olson AC, Rosenblum E, Kuchta RD 2010. Regulation of influenza RNA polymerase activity and the switch between replication and transcription by the concentrations of the vRNA 5′ end, the cap source, and the polymerase. Biochemistry 49:10208–15
    [Google Scholar]
  22. 22. 
    Turrell L, Lyall JW, Tiley LS, Fodor E, Vreede FT 2013. The role and assembly mechanism of nucleoprotein in influenza A virus ribonucleoprotein complexes. Nat. Commun. 4:1591
    [Google Scholar]
  23. 23. 
    Chua MA, Schmid S, Perez JT, Langlois RA, Tenoever BR 2013. Influenza A virus utilizes suboptimal splicing to coordinate the timing of infection. Cell Rep 3:23–29
    [Google Scholar]
  24. 24. 
    Perez JT, Zlatev I, Aggarwal S, Subramanian S, Sachidanandam R et al. 2012. A small-RNA enhancer of viral polymerase activity. J. Virol. 86:13475–85
    [Google Scholar]
  25. 25. 
    Palancade B, Bensaude O. 2003. Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur. J. Biochem. 270:3859–70
    [Google Scholar]
  26. 26. 
    Bauer DLV, Tellier M, Martinez-Alonso M, Nojima T, Proudfoot NJ et al. 2018. Influenza virus mounts a two-pronged attack on host RNA polymerase II transcription. Cell Rep 23:2119–29.e3
    [Google Scholar]
  27. 27. 
    Engelhardt OG, Smith M, Fodor E 2005. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J. Virol. 79:5812–18
    [Google Scholar]
  28. 28. 
    Zhang J, Li G, Ye X 2010. Cyclin T1/CDK9 interacts with influenza A virus polymerase and facilitates its association with cellular RNA polymerase II. J. Virol. 84:12619–27
    [Google Scholar]
  29. 29. 
    Lukarska M, Fournier G, Pflug A, Resa-Infante P, Reich S et al. 2017. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 541:117–21
    [Google Scholar]
  30. 30. 
    Serna Martin I, Hengrung N, Renner M, Sharps J, Martinez-Alonso M et al. 2018. A mechanism for the activation of the influenza virus transcriptase. Mol. Cell 72:1101–10
    [Google Scholar]
  31. 31. 
    Chamousset D, De Wever V, Moorhead GB, Chen Y, Boisvert FM et al. 2010. RRP1B targets PP1 to mammalian cell nucleoli and is associated with pre-60S ribosomal subunits. Mol. Biol. Cell 21:4212–26
    [Google Scholar]
  32. 32. 
    Su WC, Hsu SF, Lee YY, Jeng KS, Lai MM 2015. A nucleolar protein, ribosomal RNA processing 1 homolog B (RRP1B), enhances the recruitment of cellular mRNA in influenza virus transcription. J. Virol. 89:11245–55
    [Google Scholar]
  33. 33. 
    Tollervey D. 2015. RNA surveillance and the exosome. RNA 21:492–93
    [Google Scholar]
  34. 34. 
    Rialdi A, Hultquist J, Jimenez-Morales D, Peralta Z, Campisi L et al. 2017. The RNA exosome syncs IAV-RNAPII transcription to promote viral ribogenesis and infectivity. Cell 169:679–92
    [Google Scholar]
  35. 35. 
    Garcia-Robles I, Akarsu H, Muller CW, Ruigrok RW, Baudin F 2005. Interaction of influenza virus proteins with nucleosomes. Virology 332:329–36
    [Google Scholar]
  36. 36. 
    Huarte M, Sanz-Ezquerro JJ, Roncal F, Ortin J, Nieto A 2001. PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J. Virol. 75:8597–604
    [Google Scholar]
  37. 37. 
    Alfonso R, Lutz T, Rodriguez A, Chavez JP, Rodriguez P et al. 2011. CHD6 chromatin remodeler is a negative modulator of influenza virus replication that relocates to inactive chromatin upon infection. Cell. Microbiol. 13:1894–906
    [Google Scholar]
  38. 38. 
    Hu Y, Liu X, Zhang A, Zhou H, Liu Z et al. 2015. CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2. Cell. Mol. Life Sci. 72:971–82
    [Google Scholar]
  39. 39. 
    Marfella CG, Imbalzano AN. 2007. The Chd family of chromatin remodelers. Mutat. Res. 618:30–40
    [Google Scholar]
  40. 40. 
    Rodriguez A, Perez-Gonzalez A, Hossain MJ, Chen LM, Rolling T et al. 2009. Attenuated strains of influenza A viruses do not induce degradation of RNA polymerase II. J. Virol. 83:11166–74
    [Google Scholar]
  41. 41. 
    Marcos-Villar L, Pazo A, Nieto A 2016. Influenza virus and chromatin: role of the CHD1 chromatin remodeler in the virus life cycle. J. Virol. 90:3694–707
    [Google Scholar]
  42. 42. 
    Perez-Gonzalez A, Rodriguez A, Huarte M, Salanueva IJ, Nieto A 2006. hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J. Mol. Biol. 362:887–900
    [Google Scholar]
  43. 43. 
    Rodriguez A, Perez-Gonzalez A, Nieto A 2011. Cellular human CLE/C14orf166 protein interacts with influenza virus polymerase and is required for viral replication. J. Virol. 85:12062–66
    [Google Scholar]
  44. 44. 
    Rodriguez-Frandsen A, de Lucas S, Perez-Gonzalez A, Perez-Cidoncha M, Roldan-Gomendio A et al. 2016. hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles. Sci. Rep. 6:20744
    [Google Scholar]
  45. 45. 
    Jorba N, Juarez S, Torreira E, Gastaminza P, Zamarreno N et al. 2008. Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics 8:2077–88
    [Google Scholar]
  46. 46. 
    Li DQ, Nair SS, Kumar R 2013. The MORC family: new epigenetic regulators of transcription and DNA damage response. Epigenetics 8:685–93
    [Google Scholar]
  47. 47. 
    Ver LS, Marcos-Villar L, Landeras-Bueno S, Nieto A, Ortin J 2015. The cellular factor NXP2/MORC3 is a positive regulator of influenza virus multiplication. J. Virol. 89:10023–30
    [Google Scholar]
  48. 48. 
    Bortz E, Westera L, Maamary J, Steel J, Albrecht RA et al. 2011. Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. mBio 2:e00151–11
    [Google Scholar]
  49. 49. 
    Yarosh CA, Iacona JR, Lutz CS, Lynch KW 2015. PSF: nuclear busy-body or nuclear facilitator?. Wiley Interdiscip. Rev. RNA 6:351–67
    [Google Scholar]
  50. 50. 
    Landeras-Bueno S, Jorba N, Perez-Cidoncha M, Ortin J 2011. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLOS Pathog 7:e1002397
    [Google Scholar]
  51. 51. 
    Shen H. 2009. UAP56—a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep 42:185–88
    [Google Scholar]
  52. 52. 
    Shimizu K, Handa H, Nakada S, Nagata K 1994. Regulation of influenza virus RNA polymerase activity by cellular and viral factors. Nucleic Acids Res 22:5047–53
    [Google Scholar]
  53. 53. 
    Momose F, Handa H, Nagata K 1996. Identification of host factors that regulate the influenza virus RNA polymerase activity. Biochimie 78:1103–8
    [Google Scholar]
  54. 54. 
    Momose F, Basler CF, O'Neill RE, Iwamatsu A, Palese P, Nagata K 2001. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J. Virol. 75:1899–908
    [Google Scholar]
  55. 55. 
    Wisskirchen C, Ludersdorfer TH, Muller DA, Moritz E, Pavlovic J 2011. The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J. Virol. 85:8646–55
    [Google Scholar]
  56. 56. 
    Naito T, Kiyasu Y, Sugiyama K, Kimura A, Nakano R et al. 2007. An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis. PNAS 104:18235–40
    [Google Scholar]
  57. 57. 
    Hu Y, Gor V, Morikawa K, Nagata K, Kawaguchi A 2017. Cellular splicing factor UAP56 stimulates trimeric NP formation for assembly of functional influenza viral ribonucleoprotein complexes. Sci. Rep. 7:14053
    [Google Scholar]
  58. 58. 
    Li XY, Green MR. 1998. The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor. Genes Dev 12:2992–96
    [Google Scholar]
  59. 59. 
    Vijayraghavan U, Abelson J. 1990. PRP18, a protein required for the second reaction in pre-mRNA splicing. Mol. Cell. Biol. 10:324–32
    [Google Scholar]
  60. 60. 
    Lu Y, Qian XY, Krug RM 1994. The influenza virus NS1 protein: a novel inhibitor of pre-mRNA splicing. Genes Dev 8:1817–28
    [Google Scholar]
  61. 61. 
    Minakuchi M, Sugiyama K, Kato Y, Naito T, Okuwaki M et al. 2017. Pre-mRNA processing factor Prp18 is a stimulatory factor of influenza virus RNA synthesis and possesses nucleoprotein chaperone activity. J. Virol. 91:e01398–16
    [Google Scholar]
  62. 62. 
    Mondal A, Potts GK, Dawson AR, Coon JJ, Mehle A 2015. Phosphorylation at the homotypic interface regulates nucleoprotein oligomerization and assembly of the influenza virus replication machinery. PLOS Pathog 11:e1004826
    [Google Scholar]
  63. 63. 
    Turrell L, Hutchinson EC, Vreede FT, Fodor E 2015. Regulation of influenza A virus nucleoprotein oligomerization by phosphorylation. J. Virol. 89:1452–55
    [Google Scholar]
  64. 64. 
    Mondal A, Dawson AR, Potts GK, Freiberger EC, Baker SF et al. 2017. Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery. eLife 6:e26910
    [Google Scholar]
  65. 65. 
    Cui L, Mahesutihan M, Zheng W, Meng L, Fan W et al. 2018. CDC25B promotes influenza A virus replication by regulating the phosphorylation of nucleoprotein. Virology 525:40–47
    [Google Scholar]
  66. 66. 
    Liao TL, Wu CY, Su WC, Jeng KS, Lai MM 2010. Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J 29:3879–90
    [Google Scholar]
  67. 67. 
    Lin YC, Jeng KS, Lai MMC 2017. CNOT4-mediated ubiquitination of influenza A virus nucleoprotein promotes viral RNA replication. mBio 8:e00597–17
    [Google Scholar]
  68. 68. 
    Kirui J, Mondal A, Mehle A 2016. Ubiquitination upregulates influenza virus polymerase function. J. Virol. 90:10906–14
    [Google Scholar]
  69. 69. 
    Patil G, Zhao M, Song K, Hao W, Bouchereau D et al. 2018. TRIM41-mediated ubiquitination of nucleoprotein limits influenza A virus infection. J. Virol. 92:e00905–18
    [Google Scholar]
  70. 70. 
    Domingues P, Hale BG. 2017. Functional insights into ANP32A-dependent influenza A virus polymerase host restriction. Cell Rep 20:2538–46
    [Google Scholar]
  71. 71. 
    Hatakeyama D, Shoji M, Yamayoshi S, Yoh R, Ohmi N et al. 2018. Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. J. Biol. Chem. 293:7126–38
    [Google Scholar]
  72. 72. 
    Hatakeyama D, Shoji M, Yamayoshi S, Hirota T, Nagae M et al. 2014. A novel functional site in the PB2 subunit of influenza A virus essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. J. Biol. Chem. 289:24980–94
    [Google Scholar]
  73. 73. 
    Fodor E, Smith M. 2004. The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J. Virol. 78:9144–53
    [Google Scholar]
  74. 74. 
    Deng T, Sharps J, Fodor E, Brownlee GG 2005. In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J. Virol. 79:8669–74
    [Google Scholar]
  75. 75. 
    Naito T, Momose F, Kawaguchi A, Nagata K 2007. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J. Virol. 81:1339–49
    [Google Scholar]
  76. 76. 
    Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K 2002. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J. Biol. Chem. 277:45306–14
    [Google Scholar]
  77. 77. 
    Fislova T, Thomas B, Graef KM, Fodor E 2010. Association of the influenza virus RNA polymerase subunit PB2 with the host chaperonin CCT. J. Virol. 84:8691–99
    [Google Scholar]
  78. 78. 
    Cao M, Wei C, Zhao L, Wang J, Jia Q et al. 2014. DnaJA1/Hsp40 is co-opted by influenza A virus to enhance its viral RNA polymerase activity. J. Virol. 88:14078–89
    [Google Scholar]
  79. 79. 
    Wang J, Wang Y, Zhou R, Zhao J, Zhang Y et al. 2018. Host long noncoding RNA lncRNA-PAAN regulates the replication of influenza A virus. Viruses 10:330
    [Google Scholar]
  80. 80. 
    Kawaguchi A, Nagata K. 2007. De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J 26:4566–75
    [Google Scholar]
  81. 81. 
    Reilly PT, Yu Y, Hamiche A, Wang L 2014. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. Bioessays 36:1062–71
    [Google Scholar]
  82. 82. 
    Bradel-Tretheway BG, Mattiacio JL, Krasnoselsky A, Stevenson C, Purdy D et al. 2011. Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J. Virol. 85:8569–81
    [Google Scholar]
  83. 83. 
    Watanabe T, Kawakami E, Shoemaker JE, Lopes TJ, Matsuoka Y et al. 2014. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16:795–805
    [Google Scholar]
  84. 84. 
    Sugiyama K, Kawaguchi A, Okuwaki M, Nagata K 2015. pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. eLife 4:e08939
    [Google Scholar]
  85. 85. 
    Moncorge O, Mura M, Barclay WS 2010. Evidence for avian and human host cell factors that affect the activity of influenza virus polymerase. J. Virol. 84:9978–86
    [Google Scholar]
  86. 86. 
    Mehle A, Doudna JA. 2008. An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe 4:111–22
    [Google Scholar]
  87. 87. 
    Long JS, Giotis ES, Moncorge O, Frise R, Mistry B et al. 2016. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529:101–4
    [Google Scholar]
  88. 88. 
    Baker SF, Ledwith MP, Mehle A 2018. Differential splicing of ANP32A in birds alters its ability to stimulate RNA synthesis by restricted influenza polymerase. Cell Rep 24:2581–88
    [Google Scholar]
  89. 89. 
    Texari L, Stutz F. 2015. Sumoylation and transcription regulation at nuclear pores. Chromosoma 124:45–56
    [Google Scholar]
  90. 90. 
    Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC 2014. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 21:927–36
    [Google Scholar]
  91. 91. 
    Zhou Z, Cao M, Guo Y, Zhao L, Wang J et al. 2014. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus. Nat. Commun. 5:3259
    [Google Scholar]
  92. 92. 
    Yang C, Liu X, Gao Q, Cheng T, Xiao R et al. 2018. The nucleolar protein LYAR facilitates ribonucleoprotein assembly of influenza A virus. J. Virol. 92:e01042–18
    [Google Scholar]
  93. 93. 
    Ando T, Yamayoshi S, Tomita Y, Watanabe S, Watanabe T, Kawaoka Y 2016. The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nat. Microbiol. 1:16062
    [Google Scholar]
  94. 94. 
    Miyamoto Y, Yamada K, Yoneda Y 2016. Importin α: a key molecule in nuclear transport and non-transport functions. J. Biochem. 160:69–75
    [Google Scholar]
  95. 95. 
    Gabriel G, Herwig A, Klenk HD 2008. Interaction of polymerase subunit PB2 and NP with importin α1 is a determinant of host range of influenza A virus. PLOS Pathog 4:e11
    [Google Scholar]
  96. 96. 
    Hudjetz B, Gabriel G. 2012. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7. PLOS Pathog 8:e1002488
    [Google Scholar]
  97. 97. 
    Resa-Infante P, Jorba N, Zamarreno N, Fernandez Y, Juarez S, Ortin J 2008. The host-dependent interaction of α-importins with influenza PB2 polymerase subunit is required for virus RNA replication. PLOS ONE 3:e3904
    [Google Scholar]
  98. 98. 
    Boulo S, Akarsu H, Lotteau V, Muller CW, Ruigrok RW, Baudin F 2011. Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein. Virology 409:84–90
    [Google Scholar]
  99. 99. 
    Wang Y, Zhou J, Du Y 2014. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export. Virology 449:53–61
    [Google Scholar]
  100. 100. 
    Chang CK, Chen CJ, Wu CC, Chen SW, Shih SR, Kuo RL 2017. Cellular hnRNP A2/B1 interacts with the NP of influenza A virus and impacts viral replication. PLOS ONE 12:e0188214
    [Google Scholar]
  101. 101. 
    Hsu SF, Su WC, Jeng KS, Lai MM 2015. A host susceptibility gene, DR1, facilitates influenza A virus replication by suppressing host innate immunity and enhancing viral RNA replication. J. Virol. 89:3671–82
    [Google Scholar]
  102. 102. 
    York A, Hutchinson EC, Fodor E 2014. Interactome analysis of the influenza A virus transcription/replication machinery identifies protein phosphatase 6 as a cellular factor required for efficient virus replication. J. Virol. 88:13284–99
    [Google Scholar]
  103. 103. 
    Chen SC, Jeng KS, Lai MMC 2017. Zinc finger-containing cellular transcription corepressor ZBTB25 promotes influenza virus RNA transcription and is a target for zinc ejector drugs. J. Virol. 91:e00842–17
    [Google Scholar]
  104. 104. 
    Terrier O, Moules V, Carron C, Cartet G, Frobert E et al. 2012. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses. Virology 432:204–18
    [Google Scholar]
  105. 105. 
    Yan Y, Du Y, Wang G, Li K 2017. Non-structural protein 1 of H3N2 influenza A virus induces nucleolar stress via interaction with nucleolin. Sci. Rep. 7:17761
    [Google Scholar]
  106. 106. 
    Qiu Y, Nemeroff M, Krug RM 1995. The influenza virus NS1 protein binds to a specific region in human U6 snRNA and inhibits U6-U2 and U6-U4 snRNA interactions during splicing. RNA 1:304–16
    [Google Scholar]
  107. 107. 
    Heaton BE, Kennedy EM, Dumm RE, Harding AT, Sacco MT et al. 2017. A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor. Cell Rep 20:1503–12
    [Google Scholar]
  108. 108. 
    Han J, Perez JT, Chen C, Li Y, Benitez A et al. 2018. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Rep 23:596–607
    [Google Scholar]
  109. 109. 
    Goldhill DH, te Velthuis AJW, Fletcher RA, Langat P, Zambon M et al. 2018. The mechanism of resistance to favipiravir in influenza. PNAS 115:11613–18
    [Google Scholar]
  110. 110. 
    Omoto S, Speranzini V, Hashimoto T, Noshi T, Yamaguchi H et al. 2018. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 8:9633
    [Google Scholar]
  111. 111. 
    McKimm-Breschkin JL, Sahasrabudhe A, Blick TJ, McDonald M, Colman PM et al. 1998. Mutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitors. J. Virol. 72:2456–62
    [Google Scholar]
  112. 112. 
    Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH 1985. The molecular basis of the specific anti-influenza action of amantadine. EMBO J 4:3021–24
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043339
Loading
/content/journals/10.1146/annurev-virology-092917-043339
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error