Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Micromagnetometry of two-dimensional ferromagnets

Abstract

The study of atomically thin ferromagnetic crystals has led to the discovery of unusual magnetic behaviour and provided insight into the magnetic properties of bulk materials. However, the experimental techniques that have been used to explore ferromagnetism in such materials cannot probe the magnetic field directly. Here, we show that ballistic Hall micromagnetometry can be used to measure the magnetization of individual two-dimensional ferromagnets. Our devices are made by van der Waals assembly in such a way that the investigated ferromagnetic crystal is placed on top of a multi-terminal Hall bar made from encapsulated graphene. We use the micromagnetometry technique to study atomically thin chromium tribromide (CrBr3). We find that the material remains ferromagnetic down to monolayer thickness and exhibits strong out-of-plane anisotropy. We also find that the magnetic response of CrBr3 varies little with the number of layers and its temperature dependence cannot be described by the simple Ising model of two-dimensional ferromagnetism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphene-based Hall micromagnetometry.
Fig. 2: Magnetic hysteresis in few-layer CrBr3.
Fig. 3: Movement of domain walls in monolayer CrBr3.
Fig. 4: Temperature dependence of ferromagnetism in 2D CrBr3.
Fig. 5: Monolayer CrBr3 in tilted magnetic fields.

Similar content being viewed by others

Data availability

The data that support our findings are available from the corresponding authors upon reasonable request.

Code availability

The computer code used in this study is available from the corresponding authors upon reasonable request.

References

  1. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  2. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  3. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  Google Scholar 

  4. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  Google Scholar 

  5. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Article  Google Scholar 

  6. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article  Google Scholar 

  7. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  Google Scholar 

  8. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article  Google Scholar 

  9. Yao, T., Mason, J. G., Huiwen, J., Cava, R. J. & Kenneth, S. B. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

    Article  Google Scholar 

  10. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  Google Scholar 

  11. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  Google Scholar 

  12. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  Google Scholar 

  13. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  Google Scholar 

  14. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  Google Scholar 

  15. Song, T. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).

    Article  Google Scholar 

  16. Abramchuk, M. et al. Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry. Adv. Mater. 30, 1801325 (2018).

    Article  Google Scholar 

  17. McGuire, M. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Article  Google Scholar 

  18. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  19. Geim, A. K. et al. Phase transitions in individual sub-micrometre superconductors. Nature 390, 259–262 (1997).

    Article  Google Scholar 

  20. Novoselov, K. S., Geim, A. K., Dubonos, S. V., Hill, E. W. & Grigorieva, I. V. Subatomic movements of a domain wall in the Peierls potential. Nature 426, 812–816 (2003).

    Article  Google Scholar 

  21. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  22. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  Google Scholar 

  23. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  Google Scholar 

  24. Shcherbakov, D. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 18, 4214–4219 (2018).

    Article  Google Scholar 

  25. Skomski, R., Oepen, H. P. & Kirschner, J. Micromagnetics of ultrathin films with perpendicular magnetic anisotropy. Phys. Rev. B 58, 3223–3227 (1998).

    Article  Google Scholar 

  26. Christian, D. A., Novoselov, K. S. & Geim, A. K. Barkhausen statistics from a single domain wall in thin films studied with ballistic Hall magnetometry. Phys. Rev. B 74, 064403 (2006).

    Article  Google Scholar 

  27. Ho, J. T. & Litster, J. D. Divergences of the magnetic properties of CrBr3 near the critical point. J. Appl. Phys. 40, 1270–1271 (1969).

    Article  Google Scholar 

  28. Vaz, C. A. F., Bland, J. A. C. & Lauhoff, G. Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501 (2008).

    Article  Google Scholar 

  29. Xu, C., Feng, J., Xiang, H. & Bellaiche, L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput. Mater. 4, 57 (2018).

    Article  Google Scholar 

  30. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

    Article  Google Scholar 

  31. Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6622 (2018).

    Article  Google Scholar 

  32. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  Google Scholar 

  33. Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article  Google Scholar 

  34. Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    Article  Google Scholar 

  35. Novoselov, K. S. et al. Submicron probes for Hall magnetometry over the extended temperature range from helium to room temperature. J. Appl. Phys. 93, 10053–10057 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council, the Graphene Flagship and Lloyd’s Register Foundation. M.K. was partly supported by the National Research Foundation of Korea (grant 2018R1A6A3A03010943). W.K., D.G.H. and A.I.B. were supported by the Graphene NowNANO Doctoral Training Programme. J.H.E. and S.L. acknowledge support from the NSF (grant CMMI 1538127).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and P.K. carried out the project and analysed the experimental data. A.K.G. suggested and supervised the project. P.K., J.B. and S.G.X. fabricated devices. M.K., A.I.B. and W.K. performed electrical and superconducting quantum interference device measurements. D.G.H. and S.J.H. provided transmission electron microscopy analysis. M.K. performed the finite-element simulations. J.K. and P.A.M. provided theoretical support. S.L. and J.H.E. supplied hBN crystals. M.K., P.K., K.S.N., I.V.G., J.B. and A.K.G. wrote the manuscript. All of the authors contributed to discussions.

Corresponding authors

Correspondence to M. Kim, P. Kumaravadivel or A. K. Geim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Kumaravadivel, P., Birkbeck, J. et al. Micromagnetometry of two-dimensional ferromagnets. Nat Electron 2, 457–463 (2019). https://doi.org/10.1038/s41928-019-0302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-019-0302-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing