Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Translating the gut microbiome: ready for the clinic?

Abstract

Research into the gut microbiota and its role in health and disease has expanded rapidly in the past two decades. However, much of the early focus has been on cataloguing the microorganisms present, identifying correlations between microbial species and disease and using preclinical animal models to understand phenotypes. Now efforts are under way to provide functional insights into the gut microbiota and its mechanisms of action, improve understanding of the role of the microbiota beyond the gut and advance the development of microbiota-based therapeutics so that the microbiome can be harnessed in the clinic. In this Viewpoint article, we asked a selection of scientists and clinicians working in the gut microbiome field for their opinions on the major advances in and the challenges and solutions for translating gut microbiome research to the clinic, and where they expect progress to be made in the future.

The contributors

Susan V. Lynch is a professor in the Department of Medicine at the University of California, San Francisco and Director of the Benioff Center for Microbiome Medicine, United States. Her research focuses on the gut microbiome and chronic inflammatory disease, with specific emphasis on childhood allergy and asthma, and adult inflammatory bowel disease.

Siew C. Ng is a professor in the Department of Medicine and Therapeutics, Associate Director of the Centre for Gut Microbiota Research, Director of the Microbiota Innovation Centre (MagIC) and Assistant Dean for Development at the Chinese University of Hong Kong, Hong Kong. She is an Associate Editor of Gut. Her interest focuses on studies of the human gut microbiota in health and diseases, such as inflammatory bowel disease, cancer and obesity, and the increasing role of the virome and fungi in faecal microbiota transplantation.

Fergus Shanahan is Emeritus Professor of Medicine at University College Cork, National University of Ireland, and Foundation Director of APC Microbiome Ireland, a research centre funded by Science Foundation Ireland since 2003, which investigates host–microorganism interactions in the gut. His interests include most things that affect the experience of illness.

Herbert Tilg is Head of the Department of Gastroenterology, Hepatology, Endocrinology and Metabolism at Medical University Innsbruck, Austria. His main research interest is inflammation, innate immunity and interaction with the gut microbiome in gastrointestinal and liver disorders. He is an Associate Editor of Gut and Chairman of the Scientific Committee, United European Gastroenterology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levan, S. R. et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0498-2 (2019).

  6. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut. 68, 1169–1179 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972 e910 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paramsothy, S. et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns. Colitis. 11, 1180–1199 (2017).

    Article  PubMed  Google Scholar 

  13. Xu, D. et al. Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1043–1050 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schnadower, D. et al. Lactobacillus rhamnosus GG versus placebo for acute gastroenteritis in children. N. Engl. J. Med. 379, 2002–2014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freedman, S. B. et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N. Engl. J. Med. 379, 2015–2026 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Ooijevaar, R. E., Terveer, E. M., Verspaget, H. W., Kuijper, E. J. & Keller, J. J. Clinical application and potential of fecal microbiota transplantation. Annu. Rev. Med. 70, 335–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Shanahan, F. The gut microbiota – a clinical perspective on lessons learned. Nat. Rev. Gastroenterol. Hepatol. 9, 609–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Shanahan, F., van Sinderen, D., O’Toole, P. W. & Stanton, C. Feeding the microbiota: transducer of nutrient signals for the host. Gut. 66, 1709–1717 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Murphy, C. L., O’Toole, P. W. & Shanahan, F. The gut microbiota in causation, detection, and treatment of cancer. Am. J. Gastroenterol. 114, 1036–1042 (2019).

    Article  PubMed  Google Scholar 

  20. Nadim, M. K. et al. Management of the critically ill patient with cirrhosis: A multidisciplinary perspective. J. Hepatol. 64, 717–735 (2016).

    Article  PubMed  Google Scholar 

  21. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062 e1055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut. 67, 891–901 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Puri, P. et al. The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology 67, 1284–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Hendrikx, T. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut. 68, 1504–1515 (2019).

    Article  PubMed  Google Scholar 

  27. Kummen, M. et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut. 66, 611–619 (2017).

    Article  PubMed  Google Scholar 

  28. Nakamoto, N. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat. Microbiol. 4, 492–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bajaj, J. S. et al. Long-term outcomes of fecal microbiota transplantation in patients with cirrhosis. Gastroenterology 156, 1921–1923 e1923 (2019).

    Article  PubMed  Google Scholar 

  32. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park, D. I. et al. Asian Organization for Crohn’s and Colitis and Asia Pacific Association of Gastroenterology consensus on tuberculosis infection in patients with inflammatory bowel disease receiving anti-tumor necrosis factor treatment. Part 2: management. Intest. Res. 16, 17–25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 24, 1526–1531 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Serrano, M. G. et al. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat. Med. 25, 1001–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shan, Y., Segre, J. A. & Chang, E. B. Responsible stewardship for communicating microbiome research to the press and public. Nat. Med. 25, 872–874 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662,e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    CAS  PubMed  Google Scholar 

  45. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Zuo, T. et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9, 3663 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 67, 634–643 (2018).

    CAS  PubMed  Google Scholar 

  51. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, W. et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome. Med. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Robinson, T. P. et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 110, 377–380 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.V.L. is funded by awards from the US National Institutes of Health (P0515267, AI113916, AI133765, DH082147, DA040532), the Crohn’s and Colitis Foundation of America (598710) and the Rainin Foundation. S.C.N. acknowledges Z. Tao and W. Tang for their scientific input. F.S. is funded in part by Science Foundation Ireland (centre grant APC SFI/12RC/2273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan V. Lynch, Siew C. Ng, Fergus Shanahan or Herbert Tilg.

Ethics declarations

Competing interests

S.V.L. cofounded Siolta Therapeutics and is a board member and consultant for this company. She also served on the scientific advisory board of Bloom Science. F.S. is a cofounder and shareholder of Alimentary Health, Tucana Health and Atlantia Food Clinical Trials. These facts neither influenced nor constrained the contents of his responses here. S.C.N. and H.T. declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynch, S.V., Ng, S.C., Shanahan, F. et al. Translating the gut microbiome: ready for the clinic?. Nat Rev Gastroenterol Hepatol 16, 656–661 (2019). https://doi.org/10.1038/s41575-019-0204-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0204-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing