Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ring-opening (co)polymerization of γ-butyrolactone: a review

Abstract

With increased environmental concerns and the rising demands for sustainable polymers, e.g., degradable polymers and chemically recyclable polymers, studies on ring-opening polymerization (ROP) of cyclic esters have been developed in recent decades. Biorenewable five-membered γ-butyrolactone (γBL) may be a desirable feedstock for the chemical synthesis of poly(γ-butyrolactone) (PγBL) or for the incorporation of γBL units into polyester chains to modify their properties. Although γBL is traditionally considered to be “nonpolymerizable”, some progress was recently made concerning the ROP of γBL. This mini-review is thus specifically focused on the ROP of γBL and its copolymerization with other cyclic esters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12

Similar content being viewed by others

References

  1. Longo JM, Sanford MJ, Coates GW. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure–property relationships. Chem Rev. 2016;116:15167–97.

    CAS  PubMed  Google Scholar 

  2. Hillmyer MA, Tolman WB. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc Chem Res. 2014;47:2390–6.

    CAS  PubMed  Google Scholar 

  3. Schneiderman DK, Hillmyer MA. Aliphatic polyester block polymer design. Macromolecules. 2016;49:2419–28.

    CAS  Google Scholar 

  4. Gonçalves FAMM, Fonseca AC, Domingos M, Gloria A, Serra AC, JFJ Coelho. The potential of unsaturated polyesters in biomedicine and tissue engineering: synthesis, structure-properties relationships and additive manufacturing. Prog Polym Sci. 2017;68:1–34.

    Google Scholar 

  5. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL. Organocatalytic ring-opening polymerization. Chem Rev. 2007;107:5813–40.

    CAS  PubMed  Google Scholar 

  6. Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S. Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci. 2007;32:247–82.

    CAS  Google Scholar 

  7. Jerome C, Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev. 2008;60:1056–76.

    CAS  PubMed  Google Scholar 

  8. Hu S, Zhao J, Zhang G, Schlaad H. Macromolecular architectures through organocatalysis. Prog Polym Sci. 2017;74:34–77.

    CAS  Google Scholar 

  9. Moore T, Adhikari R, Gunatillake P. Chemosynthesis of bioresorbable poly(gamma-butyrolactone) by ring-opening polymerisation: a review. Biomaterials. 2005;26:3771–82.

    CAS  PubMed  Google Scholar 

  10. Nakayama A, Kawasaki N, Aiba S, Maeda Y, Arvanitoyannis I, Yamamoto N. Synthesis and biodegradability of novel copolyesters containg γ-butyrolactone units. Polymer. 1998;39:1213–22.

    CAS  Google Scholar 

  11. Houk K, Jabbari A, Hall H, Alemán C. Why δ-valerolactone polymerizes and γ-butyrolactone does not. J Org Chem. 2008;73:2674–8.

    CAS  PubMed  Google Scholar 

  12. Dubois P, Coulembier O, Raquez J-M. Handbook of Ring-Opening Polymerization. 2009. Ch. 1, p. 1–51

  13. Aleman C, Betran O, Casanovas J, Houk KN, Hall HK Jr. Thermodynamic control of the polymerizability of five-, six-, and seven-membered lactones. J Org Chem. 2009;74:6237–44.

    CAS  PubMed  Google Scholar 

  14. Saiyasombat W, Molloy R, Nicholson TM, Johnson AF, Ward IM, Poshyachinda S. Ring strain and polymerizability of cyclic esters. Polymer. 1998;39:5581–5.

    CAS  Google Scholar 

  15. Carothers WH, Dorough GL, Natta FJv. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc. 1932;54:761–72.

    CAS  Google Scholar 

  16. Hall HK, Schneider AK. Polymerization of cyclic esters, urethans, ureas and imides. J Am Chem Soc. 1958;80:6409–12.

    CAS  Google Scholar 

  17. Korte F, Glet W. Hochdruckreaktionen. II. Die polymerisation von γ-Butyrolacton und δ-Valerolactam bei hohen drücken. J Polym Sci Part B: Polym Lett. 1966;4:685–9.

    CAS  Google Scholar 

  18. Hong M, Chen EY. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of gamma-butyrolactone. Nat Chem. 2016;8:42–9.

    CAS  PubMed  Google Scholar 

  19. Hong M, Chen EY. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained gamma-butyrolactone. Angew Chem Int Ed Engl. 2016;55:4188–93.

    CAS  PubMed  Google Scholar 

  20. Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Selective ring-opening polymerization of non-strained gamma-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew Chem Int Ed Engl. 2017;56:12987–90.

    CAS  PubMed  Google Scholar 

  21. Walther P, Frey W, Naumann S. Polarized olefins as enabling (co)catalysts for the polymerization of γ-butyrolactone. Polym Chem. 2018;9:3674–83.

    CAS  Google Scholar 

  22. Zhang C-J, Hu L-F, Wu H-L, Cao X-H, Zhang X-H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules. 2018;51:8705–11.

    CAS  Google Scholar 

  23. Lin L, Han D, Qin J, Wang S, Xiao M, Sun L, et al. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules. 2018;51:9317–22.

    CAS  Google Scholar 

  24. Olsen P, Odelius K, Albertsson AC. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules. 2016;17:699–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen Y, Zhao Z, Li Y, Liu S, Liu F, Li Z. A facile method to prepare high molecular weight bio-renewable poly(γ-butyrolactone) using a strong base/urea binary synergistic catalytic system. Polym Chem. 2019;10:1231–7.

    CAS  Google Scholar 

  26. Shen Y, Zhang J, Zhao Z, Zhao N, Liu F, Li Z. Preparation of amphiphilic poly(ethylene glycol)- b-poly(gamma-butyrolactone) diblock copolymer via ring opening polymerization catalyzed by a cyclic trimeric phosphazene base or alkali alkoxide. Biomacromolecules. 2019;20:141–8.

    CAS  PubMed  Google Scholar 

  27. Bhaw-Luximon A, Jhurry D, Motala-Timol S, Lochee Y. Polymerization of ɛ-caprolactone and its copolymerization with γ-butyrolactone using metal complexes. Macromol Symposia. 2005;231:60–8.

    Google Scholar 

  28. Hong M, Tang X, Newell BS, Chen EYX. “Nonstrained” γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules. 2017;50:8469–79.

    CAS  Google Scholar 

  29. Tada K, Numata Y, Saegusa T, Furukawa J. Copolymerization of γ-butyrolactone and β-propiolactone. Makromol Chem. 1964;77:220–8.

    CAS  Google Scholar 

  30. Kricheldorf HR, Mang T, Jonté JM. Polylactones, 2 copolymerization of glycolide with β-propiolactone, γ-butyrolactone or δ-valerolactone. Makromol Chem. 1985;186:955–76.

    CAS  Google Scholar 

  31. Duda A, Penczek S, Dubois P, Mecerreyes D, Jérôme R. Oligomerization and copolymerization of γ-butyrolactone—a monomer known as unable to homopolymerize, 1. Copolymerization with ɛ-caprolactone. Macromol Chem Phys. 1996;197:1273–83.

    CAS  Google Scholar 

  32. Duda A, Biela T, Libiszowski J, Penczek S, Dubois P, Mecerreyes D, et al. Block and random copolymers of ε-caprolactone. Polym Degrad Stab. 1998;59:215–22.

    CAS  Google Scholar 

  33. Duda A, Libiszowski J, Mosnáček J, Penczek S. Copolymerization of cyclic esters at the living polymer-monomer equilibrium. Macromol Symposia. 2005;226:109–20.

    CAS  Google Scholar 

  34. Nakayama A, Kawasaki N, Arvanitoyannis I, Aiba S, Yamamoto N. Synthesis and biodegradation of poly(γ-butyrolactone-co-l-lactide). J Environ Polym Degrad. 1996;4:205–11.

    CAS  Google Scholar 

  35. Wei Z, Liu L, Qi M. Synthesis and characterization of homo- and co-polymers of (R,S)-β-butyrolactone and γ-butyrolactone or β-valerolactone initiated with cyclic tin alkoxide. React Funct Polym. 2006;66:1411–9.

    CAS  Google Scholar 

  36. Hori Y, Yamaguchi A, Hagiwara T. Chemical synthesis of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymer. 1995;36:4703–5.

    CAS  Google Scholar 

  37. Nishiura M, Hou Z, Koizumi T-a, Imamoto T, Wakatsuki Y. Ring-opening polymerization and copolymerization of lactones by samarium(II) aryloxide complexes. Macromolecules. 1999;32:8245–51.

    CAS  Google Scholar 

  38. Agarwal S, Xie X. SmI2/Sm-Based γ-Buyrolactone−ε-Caprolactone Copolymers: Microstructural Characterization Using One- and Two-Dimensional NMR Spectroscopy. Macromolecules. 2003;36:3545–9.

    CAS  Google Scholar 

  39. Nederberg F, Connor EF, Möller M, Glauser T, Hedrick JL. New paradigms for organic catalysts: the first organocatalytic living polymerization. Angew Chem Int Ed Engl. 2001;40:2712–5.

    CAS  PubMed  Google Scholar 

  40. Carlotti S, Peruch F. Cyclic monomers: epoxides, lactide, lactones, lactams, cyclic silicon-containing monomers, cyclic carbonates and others. In: Hadjichristidis N, Hirao, A, editors. Anionic polymerization: principles, practice, strength, consequences, and applications. Japan: Springer; 2015. p. 191−305.

    Google Scholar 

  41. Shen Y, Zhang J, Zhao N, Liu F, Li Z. Preparation of biorenewable poly(γ-butyrolactone)-b-poly(l-lactide) diblock copolyesters via one-pot sequential metal-free ring-opening polymerization. Polym Chem. 2018;9:2936–41.

    CAS  Google Scholar 

  42. Walther P, Naumann S. N-Heterocyclic olefin-based (co)polymerization of a challenging monomer: homopolymerization of ω-pentadecalactone and its copolymers with γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Macromolecules. 2017;50:8406–16.

    CAS  Google Scholar 

  43. Meerwein H. Uber oxoniumverbindungen des Säure-ester und lactone. Angew Chem. 1951;63:480–1.

    Google Scholar 

  44. Ito K, Inoue T, Yamashita Y. Copolymerizations of 3.3-bis(chloromethyl)oxacyclobutane with β-propiolactone and γ-butyrolactone by lewis acids: “Two-state“ polymerization mechanism. Makromol Chem. 1970;139:153–64.

    CAS  Google Scholar 

  45. Lee CW, Urakawa R, Kimura Y. Copolymerization of γ-butyrolactone and β-butyrolactone. Macromol Chem Phys. 1997;198:1109–20.

    CAS  Google Scholar 

  46. Yamashita K, Yamamoto K, Kadokawa J-i. Acid-catalyzed ring-opening polymerization of γ-butyrolactone under high-pressure conditions. Chem Lett. 2014;43:213–5.

    CAS  Google Scholar 

  47. Lin WJ. Comparison of thermal characteristics and degradation properties of epsilon-caprolactone copolymers. J Biomed Mater Res. 1999;47:420–3.

    CAS  PubMed  Google Scholar 

  48. Nobes GAR, Kazlauskas RJ, Marchessault RH. Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly(hydroxyalkanoate)s. Macromolecules. 1996;29:4829–33.

    CAS  Google Scholar 

  49. Dong H, Wang H-d, Cao S-g, Shen J-c. Lipase-catalyzed polymerization of lactones and linear hydroxyesters. Biotechnol Lett. 1998;20:905–8.

    CAS  Google Scholar 

  50. Gorke JT, Okrasa K, Louwagie A, Kazlauskas RJ, Srienc F. Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids. J Biotechnol. 2007;132:306–13.

    CAS  PubMed  Google Scholar 

  51. Kadokawa J, Iwasaki Y, Tagaya H. Ring-opening polymerization of lactones catalyzed by ion-exchanged clay montmorillonite. Green Chem. 2002;4:14–6.

    CAS  Google Scholar 

  52. Miura H, Tajima T, Nagata M, Royama T, Saito K, Hasegawa M. Synthesis of poly(ester ether)s by the reaction of .GAMMA.-butyrolactone with diols and their application to polyurthaues. Kobunshi Ronbunshu. 1999;56:291–7.

    CAS  Google Scholar 

  53. Fukuzaki H, Aiba Y, Yoshida M, Asano M, Kumakura M. Direct copolymerization of L-lactic acid with γ-butyrolactone in the absence of catalysts. Die Makromol Chem. 1989;190:1553–9.

    CAS  Google Scholar 

  54. Fukuzaki H, Yoshida M, Asano M, Aiba Y, Kumakura M. Direct copolymerization of glycolic acid with lactones in the absence of catalysts. Eur Polym J. 1990;26:457–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Peruch or Stéphane Carlotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Zhao, J., Zhang, G. et al. Ring-opening (co)polymerization of γ-butyrolactone: a review. Polym J 52, 3–11 (2020). https://doi.org/10.1038/s41428-019-0265-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0265-5

This article is cited by

Search

Quick links