Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted role of iron in renal health and disease

Abstract

Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element–iron regulatory protein (IRE–IRP) system. In the kidney, iron transport mechanisms independent of the IRE–IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.

Key points

  • The mechanisms of renal iron handling differ between nephron segments, and iron transporters have a polarized organization in renal epithelial cells.

  • Renal disorders can reduce systemic iron levels as a result of enhanced urinary iron excretion and hepcidin-mediated reduction of iron transport and can decrease erythropoiesis-mediated iron utilization through increased urinary loss and reduced synthesis of erythropoietin.

  • Acquired and inherited disturbances in systemic iron homeostasis are associated with reduced kidney function and/or kidney injury.

  • Iron has an important role in acute kidney injury and chronic kidney disease, either as a critical initiator of oxidative stress and mitochondrial dysfunction or as a potent modulator of inflammation.

  • Targeting mechanisms of local and systemic iron homeostasis may provide novel therapies for kidney disease and its complications, including anaemia; however, such approaches will require close monitoring of iron balance and potential adverse effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Systemic and cellular iron handling and regulation.
Fig. 2: Kidney iron handling.
Fig. 3: Effects of kidney diseases on systemic iron homeostasis.
Fig. 4: Effects of systemic iron disorders on kidney injury.
Fig. 5: Mechanisms of iron-mediated kidney injury and cell death.

Similar content being viewed by others

References

  1. Thevenod, F. & Wolff, N. A. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 8, 17–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Van Raaij, S. E. G. et al. Iron handling by the human kidney: glomerular filtration and tubular reabsorption both contribute to urinary iron excretion. Am. J. Physiol. Ren. Physiol. 316, F606–F614 (2019).

    Article  CAS  Google Scholar 

  3. Ponka, P. Cellular iron metabolism. Kidney Int. Suppl. 69, S2–S11 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Van Raaij, S. et al. Publisher Correction: Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci. Rep. 8, 13390 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Martines, A. M. et al. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat. Rev. Nephrol. 9, 385–398 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Bhandari, S. & Galanello, R. Renal aspects of thalassaemia a changing paradigm. Eur. J. Haematol. 89, 187–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. ElAlfy, M. S. et al. Renal iron deposition by magnetic resonance imaging in pediatric beta-thalassemia major patients: Relation to renal biomarkers, total body iron and chelation therapy. Eur. J. Radiol. 103, 65–70 (2018).

    Article  PubMed  Google Scholar 

  8. Hashemieh, M. et al. Renal hemosiderosis among iranian transfusion dependent beta-thalassemia major patients. Int. J. Hematol. Oncol. Stem Cell Res. 11, 133–138 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Bahrainwala, J. & Berns, J. S. Diagnosis of iron-deficiency anemia in chronic kidney disease. Semin. Nephrol. 36, 94–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Ganz, T. & Nemeth, E. Iron balance and the role of hepcidin in chronic kidney disease. Semin. Nephrol. 36, 87–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diaz-Garcia, J. D. et al. Deferasirox nephrotoxicity-the knowns and unknowns. Nat. Rev. Nephrol. 10, 574–586 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Martin-Sanchez, D. et al. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells. Sci. Rep. 7, 41510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Macdougall, I. C. Intravenous iron therapy in patients with chronic kidney disease: recent evidence and future directions. Clin. Kidney J. 10, i16–i24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swaminathan, S. Iron homeostasis pathways as therapeutic targets in acute kidney injury. Nephron 140, 156–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Koppenol, W. H. & Hider, R. H. Iron and redox cycling. Do’s and don’ts. Free Radic. Biol. Med. 133, 3–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Braymer, J. J. & Lill, R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292, 12754–12763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamza, I. & Dailey, H. A. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta 1823, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170, 1247–1257.e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Schuth, N. et al. Effective intermediate-spin iron in O2-transporting heme proteins. Proc. Natl Acad. Sci. USA 114, 8556–8561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carter, E. L., Ramirez, Y. & Ragsdale, S. W. The heme-regulatory motif of nuclear receptor Rev-erbbeta is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism. J. Biol. Chem. 292, 11280–11299 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwadate, R. et al. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R8–R18 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Jeffreys, L. N., Girvan, H. M., McLean, K. J. & Munro, A. W. Characterization of cytochrome P450 enzymes and their applications in synthetic biology. Methods Enzymol. 608, 189–261 (2018).

    Article  PubMed  Google Scholar 

  24. Belcher, J. D. et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123, 377–390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muralidharan, S. & Boon, E. M. Heme flattening is sufficient for signal transduction in the H-NOX family. J. Am. Chem. Soc. 134, 2044–2046 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Stranava, M. et al. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction. J. Biol. Chem. 292, 20921–20935 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heuer, A. et al. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat. Struct. Mol. Biol. 24, 453–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Johnson, N. B., Deck, K. M., Nizzi, C. P. & Eisenstein, R. S. A synergistic role of IRP1 and FBXL5 proteins in coordinating iron metabolism during cell proliferation. J. Biol. Chem. 292, 15976–15989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Y. et al. A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc. Natl Acad. Sci. USA 113, 12703–12708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lushchak, O. V., Piroddi, M., Galli, F. & Lushchak, V. I. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep. 19, 8–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Choi, J. et al. Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J. Nutr. 142, 1929–1934 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Goetze, O. et al. Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers. Hepatology 58, 2153–2162 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Xue, X. et al. Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 24, 447–461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Le Blanc, S., Garrick, M. D. & Arredondo, M. Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am. J. Physiol. Cell Physiol. 302, C1780–C1785 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Staron, R. et al. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption. PLOS ONE 12, e0181117 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Drakesmith, H., Nemeth, E. & Ganz, T. Ironing out Ferroportin. Cell Metab. 22, 777–787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuqua, B. K. et al. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLOS ONE 9, e98792 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kawabata, H. Transferrin and transferrin receptors update. Free. Radic. Biol. Med. 133, 46–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Brissot, P., Ropert, M., Le Lan, C. & Loreal, O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim. Biophys. Acta 1820, 403–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. De Swart, L. et al. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders. Haematologica 101, 38–45 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Krause, A. et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Nicolas, G. et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl Acad. Sci. USA 98, 8780–8785 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Pigeon, C. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811–7819 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, J. et al. Different characteristics of hepcidin expression in IL-6+/+ and IL-6−/− neurons and astrocytes treated with lipopolysaccharides. Neurochem. Res. 43, 1624–1630 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Van Breda, G. F. et al. Cardiac hepcidin expression associates with injury independent of iron. Am. J. Nephrol. 44, 368–378 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Van Swelm, R. P. et al. Renal handling of circulating and renal-synthesized hepcidin and its protective effects against hemoglobin-mediated kidney injury. J. Am. Soc. Nephrol. 27, 2720–2732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Van Swelm, R. P. L., Vos, M., Verhoeven, F., Thevenod, F. & Swinkels, D. W. Endogenous hepcidin synthesis protects the distal nephron against hemin and hemoglobin mediated necroptosis. Cell Death Dis. 9, 550 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. You, L. H. et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis. 8, e2676 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lakhal-Littleton, S. et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. eLife 5, e19804 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zumerle, S. et al. Targeted disruption of hepcidin in the liver recapitulates the hemochromatotic phenotype. Blood. 123, 3646–3650 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Kartikasari, A. E. et al. Secretion of bioactive hepcidin-25 by liver cells correlates with its gene transcription and points towards synergism between iron and inflammation signaling pathways. Biochim. Biophys. Acta 1784, 2029–2037 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Qiao, B. et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 15, 918–924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knutson, M. D., Oukka, M., Koss, L. M., Aydemir, F. & Wessling-Resnick, M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc. Natl Acad. Sci. USA 102, 1324–1328 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramey, G. et al. Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95, 501–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Canali, S. et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood 129, 405–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Steinbicker, A. U. et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood 118, 4224–4230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mayeur, C., Leyton, P. A., Kolodziej, S. A., Yu, B. & Bloch, K. D. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. Blood 124, 2116–2123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kautz, L. et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112, 1503–1509 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Latour, C. et al. Deletion of BMP6 worsens the phenotype of HJV-deficient mice and attenuates hepcidin levels reached after LPS challenge. Blood 130, 2339–2343 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Canali, S., Wang, C. Y., Zumbrennen-Bullough, K. B., Bayer, A. & Babitt, J. L. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am. J. Hematol. 92, 1204–1213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koch, P. S. et al. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood 129, 415–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, X. G. et al. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood 124, 1335–1343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Latour, C. et al. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin. Hepatology 63, 126–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Fillebeen, C. et al. Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood 133, 344–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wrighting, D. M. & Andrews, N. C. Interleukin-6 induces hepcidin expression through STAT3. Blood 108, 3204–3209 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gallitz, I. et al. Deficiency of the BMP Type I receptor ALK3 partly protects mice from anemia of inflammation. BMC Physiol. 18, 3 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kanamori, Y. et al. Interleukin-1beta (IL-1beta) transcriptionally activates hepcidin by inducing CCAAT enhancer-binding protein delta (C/EBPdelta) expression in hepatocytes. J. Biol. Chem. 292, 10275–10287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shanmugam, N. K., Chen, K. & Cherayil, B. J. Commensal bacteria-induced interleukin 1beta (IL-1beta) secreted by macrophages up-regulates hepcidin expression in hepatocytes by activating the bone morphogenetic protein signaling pathway. J. Biol. Chem. 290, 30637–30647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Besson-Fournier, C. et al. Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling. Blood 120, 431–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Canali, S. et al. Activin B induces noncanonical SMAD1/5/8 signaling via BMP type I receptors in hepatocytes: evidence for a role in hepcidin induction by inflammation in male mice. Endocrinology 157, 1146–1162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kanamori, Y. et al. Regulation of hepcidin expression by inflammation-induced activin B. Sci. Rep. 6, 38702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Silvestri, L. et al. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 8, 502–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Du, X. et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, 1088–1092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Melis, M. A. et al. A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that suppresses hepcidin production, in familial iron deficiency anemia refractory to oral iron. Haematologica 93, 1473–1479 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Wahedi, M. et al. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J. Biol. Chem. 292, 18354–18371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jiang, J. et al. N-glycosylation is required for matriptase-2 autoactivation and ectodomain shedding. J. Biol. Chem. 289, 19500–19507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jelkmann, W. Regulation of erythropoietin production. J. Physiol. 589, 1251–1258 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Pak, M., Lopez, M. A., Gabayan, V., Ganz, T. & Rivera, S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood 108, 3730–3735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arezes, J. et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 132, 1473–1477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, C. Y. et al. Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood 130, 73–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aschemeyer, S., Gabayan, V., Ganz, T., Nemeth, E. & Kautz, L. Erythroferrone and matriptase-2 independently regulate hepcidin expression. Am. J. Hematol. 92, E61–E63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nai, A. et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood 127, 2327–2336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kautz, L. & Nemeth, E. Molecular liaisons between erythropoiesis and iron metabolism. Blood 124, 479–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Girelli, D., Nemeth, E. & Swinkels, D. W. Hepcidin in the diagnosis of iron disorders. Blood 127, 2809–2813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Asperti, M., Denardo, A., Gryzik, M., Arosio, P. & Poli, M. The role of heparin, heparanase and heparan sulfates in hepcidin regulation. Vitam. Horm. 110, 157–188 (2019).

    Article  PubMed  Google Scholar 

  90. Bacchetta, J. et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 25, 564–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Dev, S. & Babitt, J. L. Overview of iron metabolism in health and disease. Hemodial. Int. 21, S6–S20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Anderson, S. A. et al. The IRP1-HIF-2alpha axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17, 282–290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koury, M. J. & Haase, V. H. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat. Rev. Nephrol. 11, 394–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Nunez, M. T., Gaete, V., Watkins, J. A. & Glass, J. Mobilization of iron from endocytic vesicles. The effects of acidification and reduction. J. Biol. Chem. 265, 6688–6692 (1990).

    CAS  PubMed  Google Scholar 

  97. Ohgami, R. S. et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37, 1264–1269 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fleming, M. D. et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16, 383–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, C. Y. et al. ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J. Biol. Chem. 287, 34032–34043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao, N., Gao, J., Enns, C. A. & Knutson, M. D. ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J. Biol. Chem. 285, 32141–32150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Coffey, R. & Knutson, M. D. The plasma membrane metal-ion transporter ZIP14 contributes to nontransferrin-bound iron uptake by human beta-cells. Am. J. Physiol. Cell Physiol. 312, C169–C175 (2017).

    Article  PubMed  Google Scholar 

  102. Ji, C. & Kosman, D. J. Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons. J. Neurochem. 133, 668–683 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nielsen, M. J., Andersen, C. B. & Moestrup, S. K. CD163 binding to haptoglobin-hemoglobin complexes involves a dual-point electrostatic receptor-ligand pairing. J. Biol. Chem. 288, 18834–18841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hvidberg, V. et al. Identification of the receptor scavenging hemopexin-heme complexes. Blood 106, 2572–2579 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Duffy, S. P. et al. The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Mol. Cell Biol. 30, 5318–5324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gozzelino, R. & Soares, M. P. Coupling heme and iron metabolism via ferritin H chain. Antioxid. Redox Signal. 20, 1754–1769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Graham, R. M., Chua, A. C., Herbison, C. E., Olynyk, J. K. & Trinder, D. Liver iron transport. World J. Gastroenterol. 13, 4725–4736 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Frey, A. G. et al. Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase. Proc. Natl. Acad. Sci. USA 111, 8031–8036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Honarmand Ebrahimi, K., Bill, E., Hagedoorn, P. L. & Hagen, W. R. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement. Nat. Chem. Biol. 8, 941–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Wilkinson, N. & Pantopoulos, K. The IRP/IRE system in vivo: insights from mouse models. Front. Pharmacol. 5, 176 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Norden, A. G. et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int. 60, 1885–1892 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Kozyraki, R. et al. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc. Natl Acad. Sci. USA 98, 12491–12496 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, D., Meyron-Holtz, E. & Rouault, T. A. Renal iron metabolism: transferrin iron delivery and the role of iron regulatory proteins. J. Am. Soc. Nephrol. 18, 401–406 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Chen, A. C., Donovan, A., Ned-Sykes, R. & Andrews, N. C. Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis. Proc. Natl Acad. Sci. USA 112, 11714–11719 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, L. & Boyer, J. L. The maintenance and generation of membrane polarity in hepatocytes. Hepatology 39, 892–899 (2004).

    Article  PubMed  Google Scholar 

  116. Schreiner, R. et al. The absence of a clathrin adapter confers unique polarity essential to proximal tubule function. Kidney Int. 78, 382–388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Perez Bay, A. E., Schreiner, R., Benedicto, I. & Rodriguez-Boulan, E. J. Galectin-4-mediated transcytosis of transferrin receptor. J. Cell Sci. 127, 4457–4469 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Perez Bay, A. E. et al. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. EMBO J. 32, 2125–2139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weiss, A. et al. Orchestrated regulation of iron trafficking proteins in the kidney during iron overload facilitates systemic iron retention. PLOS ONE 13, e0204471 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Smith, C. P. et al. Proximal tubule transferrin uptake is modulated by cellular iron and mediated by apical membrane megalin-cubilin complex and transferrin receptor 1. J. Biol. Chem. 294, 7025–7036 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Langelueddecke, C. et al. Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J. Biol. Chem. 287, 159–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Gburek, J. et al. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. J. Am. Soc. Nephrol. 13, 423–430 (2002).

    CAS  PubMed  Google Scholar 

  123. Cooper, M. A., Buddington, B., Miller, N. L. & Alfrey, A. C. Urinary iron speciation in nephrotic syndrome. Am. J. Kidney Dis. 25, 314–319 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. DuBose, T. D. Jr. et al. Comparison of acidification parameters in superficial and deep nephrons of the rat. Am. J. Physiol. 244, F497–F503 (1983).

    PubMed  Google Scholar 

  125. Haldar, S. et al. Prion protein promotes kidney iron uptake via its ferrireductase activity. J. Biol. Chem. 290, 5512–5522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Van Raaij, S. E. G., Masereeuw, R., Swinkels, D. W. & Van Swelm, R. P. L. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells. Toxicol. Lett. 295, 179–186 (2018).

    Article  PubMed  CAS  Google Scholar 

  127. He, L. et al. ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol. Pharmacol. 70, 171–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Pinilla-Tenas, J. J. et al. Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am. J. Physiol. Cell Physiol. 301, C862–C871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sci.ndia, Y. et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J. Am. Soc. Nephrol. 26, 2800–2814 (2015).

    Article  CAS  Google Scholar 

  130. Liu, B. C., Tang, T. T., Lv, L. L. & Lan, H. Y. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 93, 568–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Rubio-Navarro, A. et al. Podocytes are new cellular targets of haemoglobin-mediated renal damage. J. Pathol. 244, 296–310 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Jin, X. et al. Overexpression of Myo1e in mouse podocytes enhances cellular endocytosis, migration, and adhesion. J. Cell Biochem. 115, 410–419 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Banyai, E. et al. Novel functional changes during podocyte differentiation: increase of oxidative resistance and H-ferritin expression. Oxid. Med. Cell. Longev. 2014, 976394 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Tajima, S. et al. Effect of angiotensin II on iron-transporting protein expression and subsequent intracellular labile iron concentration in human glomerular endothelial cells. Hypertens. Res. 33, 713–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Cheng, H. T. et al. Ferritin heavy chain mediates the protective effect of heme oxygenase-1 against oxidative stress. Biochim. Biophys. Acta 1850, 2506–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Kumar, D. et al. Heme oxygenase-1 modulates mesangial cell proliferation by p21 Waf1 upregulation. Ren. Fail. 32, 254–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, Y. & Templeton, D. M. Iron-dependent turnover of IRP-1/c-aconitase in kidney cells. Metallomics 7, 766–775 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Meyron-Holtz, E. G. et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 23, 386–395 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nangaku, M., Rosenberger, C., Heyman, S. N. & Eckardt, K. U. Regulation of hypoxia-inducible factor in kidney disease. Clin. Exp. Pharmacol. Physiol. 40, 148–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Schodel, J. et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174, 1663–1674 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Vilasi, A. et al. Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am. J. Physiol. Ren. Physiol. 293, F456–F467 (2007).

    Article  CAS  Google Scholar 

  142. Blanchard, A. et al. Observations of a large Dent disease cohort. Kidney Int. 90, 430–439 (2016).

    Article  PubMed  Google Scholar 

  143. Brown, E. A., Sampson, B., Muller, B. R. & Curtis, J. R. Urinary iron loss in the nephrotic syndrome-an unusual cause of iron deficiency with a note on urinary copper losses. Postgrad. Med. J. 60, 125–128 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ellis, D. Anemia in the course of the nephrotic syndrome secondary to transferrin depletion. J. Pediatr. 90, 953–955 (1977).

    Article  CAS  PubMed  Google Scholar 

  145. Hancock, D. E., Onstad, J. W. & Wolf, P. L. Transferrin loss into the urine with hypochromic, microcytic anemia. Am. J. Clin. Pathol. 65, 73–78 (1976).

    Article  CAS  PubMed  Google Scholar 

  146. Howard, R. L., Buddington, B. & Alfrey, A. C. Urinary albumin, transferrin and iron excretion in diabetic patients. Kidney Int. 40, 923–926 (1991).

    Article  CAS  PubMed  Google Scholar 

  147. Prinsen, B. H. et al. Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J. Am. Soc. Nephrol. 12, 1017–1025 (2001).

    CAS  PubMed  Google Scholar 

  148. Skikne, B. S. Serum transferrin receptor. Am. J. Hematol. 83, 872–875 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Branten, A. J., Swinkels, D. W., Klasen, I. S. & Wetzels, J. F. Serum ferritin levels are increased in patients with glomerular diseases and proteinuria. Nephrol. Dial. Transplant. 19, 2754–2760 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Cohen, L. A. et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116, 1574–1584 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Jenkitkasemwong, S. et al. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab. 22, 138–150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Donker, A. E. et al. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis. Blood 123, 3873–3886 quiz 4005 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. McGonigle, R. J., Wallin, J. D., Shadduck, R. K. & Fisher, J. W. Erythropoietin deficiency and inhibition of erythropoiesis in renal insufficiency. Kidney Int. 25, 437–444 (1984).

    Article  CAS  PubMed  Google Scholar 

  154. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Inoue, A., Babazono, T., Suzuki, K. & Iwamoto, Y. Albuminuria is an independent predictor of decreased serum erythropoietin levels in type 2 diabetic patients. Nephrol. Dial. Transplant. 22, 287–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Toubiana, J. et al. Therapy-resistant anaemia in congenital nephrotic syndrome of the Finnish type-implication of EPO, transferrin and transcobalamin losses. Nephrol. Dial. Transplant. 24, 1338–1340 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Yamaguchi-Yamada, M. et al. Anemia with chronic renal disorder and disrupted metabolism of erythropoietin in ICR-derived glomerulonephritis (ICGN) mice. J. Vet. Med. Sci. 66, 423–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Zhou, X. J. & Vaziri, N. D. Erythropoietin metabolism and pharmacokinetics in experimental nephrosis. Am. J. Physiol. 263, F812–F815 (1992).

    CAS  PubMed  Google Scholar 

  159. Harris, Z. L., Durley, A. P., Man, T. K. & Gitlin, J. D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl Acad. Sci. USA 96, 10812–10817 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Niel, O., Thouret, M. C. & Berard, E. Anemia in congenital nephrotic syndrome: role of urinary copper and ceruloplasmin loss. Blood 117, 6054–6055 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Ashby, D. R. et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int. 75, 976–981 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Peters, H. P., Laarakkers, C. M., Swinkels, D. W. & Wetzels, J. F. Serum hepcidin-25 levels in patients with chronic kidney disease are independent of glomerular filtration rate. Nephrol. Dial. Transplant. 25, 848–853 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Tomosugi, N. et al. Detection of serum hepcidin in renal failure and inflammation by using ProteinChip System. Blood 108, 1381–1387 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Valenti, L., Messa, P., Pelusi, S., Campostrini, N. & Girelli, D. Hepcidin levels in chronic hemodialysis patients: a critical evaluation. Clin. Chem. Lab. Med. 52, 613–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Van Der Weerd, N. C. et al. Hepcidin in chronic kidney disease: not an anaemia management tool, but promising as a cardiovascular biomarker. Neth. J. Med. 73, 108–118 (2015).

    PubMed  Google Scholar 

  166. Drakesmith, H. & Prentice, A. M. Hepcidin and the iron-infection axis. Science 338, 768–772 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Macdougall, I. C. et al. Iron management in chronic kidney disease: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 89, 28–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Nakanishi, T., Kuragano, T., Nanami, M. & Hasuike, Y. Iron localization and infectious disease in chronic kidney disease patients. Am. J. Nephrol. 43, 237–244 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Nakanishi, T. et al. Hepcidin: another culprit for complications in patients with chronic kidney disease? Nephrol. Dial. Transplant. 26, 3092–3100 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Sullivan, J. L. Macrophage iron, hepcidin, and atherosclerotic plaque stability. Exp. Biol. Med. 232, 1014–1020 (2007).

    Article  CAS  Google Scholar 

  171. Sullivan, J. L. Iron in arterial plaque: modifiable risk factor for atherosclerosis. Biochim. Biophys. Acta 1790, 718–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Li, J. J. et al. Hepcidin destabilizes atherosclerotic plaque via overactivating macrophages after erythrophagocytosis. Arterioscler. Thromb. Vasc. Biol. 32, 1158–1166 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Saeed, O. et al. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 299–307 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Malhotra, R. et al. Hepcidin deficiency protects against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 39, 178–187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Finn, A. V. et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J. Am. Coll. Cardiol. 59, 166–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Abdel-Khalek, M. A., El-Barbary, A. M., Essa, S. A. & Ghobashi, A. S. Serum hepcidin: a direct link between anemia of inflammation and coronary artery atherosclerosis in patients with rheumatoid arthritis. J. Rheumatol. 38, 2153–2159 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Galesloot, T. E. et al. Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population. Arterioscler. Thromb. Vasc. Biol. 34, 446–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Valenti, L. et al. Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations. Arterioscler. Thromb. Vasc. Biol. 31, 683–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Valenti, L. et al. Serum ferritin levels are associated with vascular damage in patients with nonalcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 21, 568–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Kuragano, T. et al. Hepcidin as well as TNF-alpha are significant predictors of arterial stiffness in patients on maintenance hemodialysis. Nephrol. Dial. Transplant. 26, 2663–2667 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Ulu, S. M. et al. Associations between serum hepcidin level, FGF-21 level and oxidative stress with arterial stiffness in CAPD patients. Int. Urol. Nephrol. 46, 2409–2414 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Hsieh, Y. P. et al. Hepcidin-25 negatively predicts left ventricular mass index in chronic kidney disease patients. World J. Nephrol. 2, 38–43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mostovaya, I. M. et al. Left ventricular mass in dialysis patients, determinants and relation with outcome. Results from the convective transport study (CONTRAST). PLOS ONE 9, e84587 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Van Der Weerd, N. C. et al. Hepcidin-25 is related to cardiovascular events in chronic haemodialysis patients. Nephrol. Dial. Transplant. 28, 3062–3071 (2013).

    Article  PubMed  CAS  Google Scholar 

  185. Bonomini, M., Del Vecchio, L., Sirolli, V. & Locatelli, F. new treatment approaches for the anemia of CKD. Am. J. Kidney Dis. 67, 133–142 (2016).

    Article  PubMed  Google Scholar 

  186. Kortman, G. A. M., Reijnders, D. & Swinkels, D. W. Oral iron supplementation: Potential implications for the gut microbiome and metabolome in patients with CKD. Hemodial. Int. 21, S28–S36 (2017).

    Article  PubMed  Google Scholar 

  187. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    Article  PubMed  Google Scholar 

  188. Pisoni, R. L., Fuller, D. S., Bieber, B. A., Gillespie, B. W. & Robinson, B. M. The DOPPS Practice Monitor for US dialysis care: trends through August 2011. Am. J. Kidney Dis. 60, 160–165 (2012).

    Article  PubMed  Google Scholar 

  189. Ishida, J. H. & Johansen, K. L. Iron and infection in hemodialysis patients. Semin. Dial. 27, 26–36 (2014).

    Article  PubMed  Google Scholar 

  190. Rostoker, G. et al. Hemodialysis-associated hemosiderosis in the era of erythropoiesis-stimulating agents: a MRI study. Am. J. Med. 125, 991–999 e1 (2012).

    Article  PubMed  Google Scholar 

  191. Wish, J. B. et al. Positive iron balance in chronic kidney disease: how much is too much and how to tell? Am. J. Nephrol. 47, 72–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Macdougall, I. C. et al. Renal function in patients with non-dialysis chronic kidney disease receiving intravenous ferric carboxymaltose: an analysis of the randomized FIND-CKD trial. BMC Nephrol. 18, 24 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Roger, S. D. et al. Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial. Nephrol. Dial. Transplant. 32, 1530–1539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Agarwal, R., Kusek, J. W. & Pappas, M. K. A randomized trial of intravenous and oral iron in chronic kidney disease. Kidney Int. 88, 905–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Macdougall, I. C. et al. Intravenous iron in patients undergoing maintenance hemodialysis. N. Engl. J. Med. 380, 447–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Nakayama, M., Kaizu, Y., Uesugi, N., Nakashita, S. & Suehiro, T. A case of IgA nephropathy and renal hemosiderosis associated with primary hemochromatosis. Ren. Fail. 30, 813–817 (2008).

    Article  PubMed  Google Scholar 

  197. Ozkurt, S., Acikalin, M. F., Temiz, G., Akay, O. M. & Soydan, M. Renal hemosiderosis and rapidly progressive glomerulonephritis associated with primary hemochromatosis. Ren. Fail. 36, 814–816 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Powell, L. W., Seckington, R. C. & Deugnier, Y. Haemochromatosis. Lancet 388, 706–716 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. van Bokhoven, M. A., van Deursen, C. T. & Swinkels, D. W. Diagnosis and management of hereditary haemochromatosis. BMJ 342, c7251 (2011).

    Article  PubMed  CAS  Google Scholar 

  200. Taher, A. T., Weatherall, D. J. & Cappellini, M. D. Thalassaemia. Lancet 391, 155–167 (2018).

    Article  PubMed  Google Scholar 

  201. Muncie, H. L. Jr. & Campbell, J. Alpha and beta thalassemia. Am. Fam. Physician 80, 339–344 (2009).

    PubMed  Google Scholar 

  202. Nemeth, E. Hepcidin in beta-thalassemia. Ann. NY Acad. Sci. 1202, 31–35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Leaf, D. E. & Swinkels, D. W. Catalytic iron and acute kidney injury. Am. J. Physiol. Ren. Physiol. 311, F871–F876 (2016).

    Article  CAS  Google Scholar 

  204. Slotki, I. & Cabantchik, Z. I. The Labile Side of Iron Supplementation in CKD. J. Am. Soc. Nephrol. 26, 2612–2619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ahmadzadeh, A. et al. Renal tubular dysfunction in pediatric patients with beta-thalassemia major. Saudi J. Kidney Dis. Transpl. 22, 497–500 (2011).

    PubMed  Google Scholar 

  206. Annayev, A. et al. Glomerular and tubular functions in children and adults with transfusion-dependent thalassemia. Turk. J. Haematol. 35, 66–70 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dee, C. M., Cheuk, D. K., Ha, S. Y., Chiang, A. K. & Chan, G. C. Incidence of deferasirox-associated renal tubular dysfunction in children and young adults with beta-thalassaemia. Br. J. Haematol. 167, 434–436 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Deveci, B., Kurtoglu, A., Kurtoglu, E., Salim, O. & Toptas, T. Documentation of renal glomerular and tubular impairment and glomerular hyperfiltration in multitransfused patients with beta thalassemia. Ann. Hematol. 95, 375–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Sheerin, N. S., Sacks, S. H. & Fogazzi, G. B. In vitro erythrophagocytosis by renal tubular cells and tubular toxicity by haemoglobin and iron. Nephrol. Dial. Transplant. 14, 1391–1397 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Sponsel, H. T. et al. Effect of iron on renal tubular epithelial cells. Kidney Int. 50, 436–444 (1996).

    Article  CAS  PubMed  Google Scholar 

  211. Lopez, A., Cacoub, P., Macdougall, I. C. & Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 387, 907–916 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Finberg, K. E. et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat. Genet. 40, 569–571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Babitt, J. L. & Lin, H. Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 23, 1631–1634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Drake, K. A., Sauerbry, M. J., Blohowiak, S. E., Repyak, K. S. & Kling, P. J. Iron deficiency and renal development in the newborn rat. Pediatr. Res. 66, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Woodman, A. G. et al. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver. FASEB J. 32, 3254–3263 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. El-Shimi, M. S. et al. Renal functional and structural integrity in infants with iron deficiency anemia: relation to oxidative stress and response to iron therapy. Pediatr. Nephrol. 30, 1835–1842 (2015).

    Article  PubMed  Google Scholar 

  217. Hassan, R. H., Kandil, S. M., Zeid, M. S., Zaki, M. E. & Fouda, A. E. Kidney injury in infants and children with iron-deficiency anemia before and after iron treatment. Hematology 22, 565–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  218. Haase, M., Bellomo, R. & Haase-Fielitz, A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J. Am. Coll. Cardiol. 55, 2024–2033 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Leaf, D. E. et al. Iron, hepcidin, and death in human AKI. J. Am. Soc. Nephrol. 30, 493–504 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Leaf, D. E. et al. Increased plasma catalytic iron in patients may mediate acute kidney injury and death following cardiac surgery. Kidney Int. 87, 1046–1054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Leaf, D. E., Rajapurkar, M., Lele, S. S., Mukhopadhyay, B. & Waikar, S. S. Plasma catalytic iron, AKI, and death among critically ill patients. Clin. J. Am. Soc. Nephrol. 9, 1849–1856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Baliga, R., Ueda, N. & Shah, S. V. Kidney iron status in passive Heymann nephritis and the effect of an iron-deficient diet. J. Am. Soc. Nephrol. 7, 1183–1188 (1996).

    CAS  PubMed  Google Scholar 

  223. Remuzzi, A., Puntorieri, S., Brugnetti, B., Bertani, T. & Remuzzi, G. Renoprotective effect of low iron diet and its consequence on glomerular hemodynamics. Kidney Int. 39, 647–652 (1991).

    Article  CAS  PubMed  Google Scholar 

  224. Naito, Y. et al. Effect of iron restriction on renal damage and mineralocorticoid receptor signaling in a rat model of chronic kidney disease. J. Hypertens. 30, 2192–2201 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Ikeda, Y. et al. Dietary iron restriction alleviates renal tubulointerstitial injury induced by protein overload in mice. Sci. Rep. 7, 10621 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Naito, Y. et al. Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease. Hypertens. Res. 38, 463–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  227. Ikeda, Y. et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLOS ONE 9, e89355 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Nankivell, B. J., Chen, J., Boadle, R. A. & Harris, D. C. The role of tubular iron accumulation in the remnant kidney. J. Am. Soc. Nephrol. 4, 1598–1607 (1994).

    CAS  PubMed  Google Scholar 

  229. Marks, E. S. et al. Renal iron accumulation occurs in lupus nephritis and iron chelation delays the onset of albuminuria. Sci. Rep. 7, 12821 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Rajapurkar, M. M., Hegde, U., Bhattacharya, A., Alam, M. G. & Shah, S. V. Effect of deferiprone, an oral iron chelator, in diabetic and non-diabetic glomerular disease. Toxicol. Mech. Methods 23, 5–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Del Greco, M. F. et al. Serum iron level and kidney function: a Mendelian randomization study. Nephrol. Dial. Transplant. 32, 273–278 (2017).

    Article  Google Scholar 

  232. Vaugier, C. et al. Serum iron protects from renal postischemic injury. J. Am. Soc. Nephrol. 28, 3605–3615 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Choi, N. et al. Urinary hepcidin-25 Is elevated in patients that avoid acute kidney injury following cardiac surgery. Can. J. Kidney Health Dis. 5, 2054358117744224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Haase-Fielitz, A. et al. Urine hepcidin has additive value in ruling out cardiopulmonary bypass-associated acute kidney injury: an observational cohort study. Crit. Care 15, R186 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Ho, J. et al. Urinary hepcidin-25 and risk of acute kidney injury following cardiopulmonary bypass. Clin. J. Am. Soc. Nephrol. 6, 2340–2346 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Prowle, J. R. et al. Greater increase in urinary hepcidin predicts protection from acute kidney injury after cardiopulmonary bypass. Nephrol. Dial. Transplant. 27, 595–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  237. Bolisetty, S., Zarjou, A. & Agarwal, A. Heme oxygenase 1 as a therapeutic target in acute kidney injury. Am. J. Kidney Dis. 69, 531–545 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hatcher, H. C., Tesfay, L., Torti, S. V. & Torti, F. M. Cytoprotective effect of ferritin H in renal ischemia reperfusion injury. PLOS ONE 10, e0138505 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Zarjou, A. et al. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J. Clin. Invest. 123, 4423–4434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bolisetty, S. et al. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney Int. 88, 95–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Adedoyin, O. et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am. J. Physiol. Ren. Physiol. 314, F702–F714 (2018).

    Article  CAS  Google Scholar 

  242. Mori, K. et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Invest. 115, 610–621 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zager, R. A., Johnson, A. C. & Frostad, K. B. Combined iron sucrose and protoporphyrin treatment protects against ischemic and toxin-mediated acute renal failure. Kidney Int. 90, 67–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Johnson, A. C. M. & Zager, R. A. Mechanisms and consequences of oxidant-induced renal preconditioning: an Nrf2-dependent, P21-independent, anti-senescence pathway. Nephrol. Dial. Transplant. 33, 1927–1941 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Johnson, A. C. M., Delrow, J. J. & Zager, R. A. Tin protoporphyrin activates the oxidant-dependent NRF2-cytoprotective pathway and mitigates acute kidney injury. Transl. Res. 186, 1–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  246. Leaf, D. E. et al. Length polymorphisms in heme oxygenase-1 and AKI after cardiac surgery. J. Am. Soc. Nephrol. 27, 3291–3297 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Plotnikov, E. Y., Chupyrkina, A. A., Pevzner, I. B., Isaev, N. K. & Zorov, D. B. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim. Biophys. Acta 1792, 796–803 (2009).

    Article  CAS  PubMed  Google Scholar 

  248. Cybulsky, A. V. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13, 681–696 (2017).

    Article  CAS  PubMed  Google Scholar 

  249. Torti, F. M. & Torti, S. V. Regulation of ferritin genes and protein. Blood 99, 3505–3516 (2002).

    Article  CAS  PubMed  Google Scholar 

  250. Szeto, H. H. et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1beta and IL-18 and arrests CKD. J. Am. Soc. Nephrol. 28, 1437–1449 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. Wang, L. et al. Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. J. Clin. Invest. 119, 3322–3328 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Bochi, G. V. et al. Fenton reaction-generated advanced oxidation protein products induces inflammation in human embryonic kidney cells. Inflammation 39, 1285–1290 (2016).

    Article  CAS  PubMed  Google Scholar 

  253. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Fang, S., Yu, X., Ding, H., Han, J. & Feng, J. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Biochem. Biophys. Res. Commun. 503, 297–303 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Nankivell, B. J., Tay, Y. C., Boadle, R. A. & Harris, D. C. Lysosomal iron accumulation in diabetic nephropathy. Ren. Fail. 16, 367–381 (1994).

    Article  CAS  PubMed  Google Scholar 

  258. Sioutas, A. et al. Oxidant-induced autophagy and ferritin degradation contribute to epithelial-mesenchymal transition through lysosomal iron. J. Inflamm. Res. 10, 29–39 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Von Massenhausen, A., Tonnus, W. & Linkermann, A. Cell death pathways drive necroinflammation during acute kidney injury. Nephron 140, 144–147 (2018).

    Article  CAS  Google Scholar 

  260. Sarhan, M., Von Massenhausen, A., Hugo, C., Oberbauer, R. & Linkermann, A. Immunological consequences of kidney cell death. Cell Death Dis. 9, 114 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Sureshbabu, A. et al. RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. JCI Insight 3, 98411 (2018).

    Article  PubMed  Google Scholar 

  262. Sarhan, M., Land, W. G., Tonnus, W., Hugo, C. P. & Linkermann, A. Origin and consequences of necroinflammation. Physiol. Rev. 98, 727–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  263. Zhou, B. et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 28, 1171–1185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhang, Z. et al. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis. 9, 983 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Yang, J. R. et al. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Ren. Physiol. 306, F75–F84 (2014).

    Article  CAS  Google Scholar 

  266. Locatelli, F. & Del Vecchio, L. Will there still be a role for the originator erythropoiesis-simulating agents after the biosimilars and the hypoxia-inducible factor stabilizers approval? Curr. Opin. Nephrol. Hypertens. 27, 339–344 (2018).

    Article  CAS  PubMed  Google Scholar 

  267. Ganz, T., Bino, A. & Salusky, I. B. Mechanism of action and clinical attributes of Auryxia® (ferric citrate). Drugs 79, 957–968 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Fishbane, S. et al. Effects of ferric citrate in patients with nondialysis-dependent CKD and iron deficiency anemia. J. Am. Soc. Nephrol. 28, 1851–1858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Yokoyama, K. et al. Randomised clinical trial of ferric citrate hydrate on anaemia management in haemodialysis patients with hyperphosphataemia: ASTRIO study. Sci. Rep. 9, 8877 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Petzer, V., Theurl, I. & Weiss, G. Established and emerging concepts to treat imbalances of iron homeostasis in inflammatory diseases. Pharmaceuticals 11, E135 (2018).

    Article  CAS  Google Scholar 

  271. Schwoebel, F. et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood 121, 2311–2315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Boyce, M. et al. Safety, pharmacokinetics and pharmacodynamics of the anti-hepcidin Spiegelmer lexaptepid pegol in healthy subjects. Br. J. Pharmacol. 173, 1580–1588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Van Eijk, L. T. et al. Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood 124, 2643–2646 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Hohlbaum, A. M. et al. Sustained plasma hepcidin suppression and iron elevation by anticalin-derived hepcidin antagonist in cynomolgus monkey. Br. J. Pharmacol. 175, 1054–1065 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Renders, L. et al. First-in-human phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis. PLOS ONE 14, e0212023 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Galli, M. et al. Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy. Haematologica 103, e469–e472 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Sheetz, M. et al. Targeting the hepcidin-ferroportin pathway in anaemia of chronic kidney disease. Br. J. Clin. Pharmacol. 85, 935–948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Barrington, P. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of an anti-ferroportin antibody in patients with anemia due to chronic renal failure. Blood 128, 1280 (2016).

    Article  Google Scholar 

  279. Chen, N. et al. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China. Nephrol. Dial. Transplant. 32, 1373–1386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Haase, V. H. et al. Effects of vadadustat on hemoglobin concentrations in patients receiving hemodialysis previously treated with erythropoiesis-stimulating agents. Nephrol. Dial. Transplant. 34, 90–99 (2019).

    Article  PubMed  Google Scholar 

  281. Brigandi, R. A. et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: a 28-day, phase 2A randomized trial. Am. J. Kidney Dis. 67, 861–871 (2016).

    Article  CAS  PubMed  Google Scholar 

  282. Macdougall, I. C., Akizawa, T., Berns, J. S., Bernhardt, T. & Krueger, T. Effects of molidustat in the treatment of anemia in CKD. Clin. J. Am. Soc. Nephrol. 14, 28–39 (2019).

    Article  PubMed  Google Scholar 

  283. Akizawa, T. et al. Long-term efficacy and safety of molidustat for anemia in chronic kidney disease: DIALOGUE extension studies. Am. J. Nephrol. 49, 271–280 (2019).

    Article  CAS  PubMed  Google Scholar 

  284. Akizawa, T. et al. A placebo-controlled, randomized trial of enarodustat in patients with chronic kidney disease followed by long-term trial. Am. J. Nephrol. 49, 165–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  285. Kaplan, J. M., Sharma, N. & Dikdan, S. Hypoxia-inducible factor and its role in the management of anemia in chronic kidney disease. Int. J. Mol. Sci. 19, E389 (2018).

    Article  PubMed  CAS  Google Scholar 

  286. Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Kong, K. H. et al. Selective tubular activation of hypoxia-inducible factor-2alpha has dual effects on renal fibrosis. Sci. Rep. 7, 11351 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Maxwell, P. H. & Eckardt, K. U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 12, 157–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  289. Benyamin, B. et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat. Commun. 5, 4926 (2014).

    Article  CAS  PubMed  Google Scholar 

  290. Pelusi, S. et al. The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis. BMC Nephrol. 14, 48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Itkonen, O., Vaahtera, L. & Parkkinen, J. Comparison of bleomycin-detectable iron and labile plasma iron assays. Clin. Chem. 59, 1271–1273 (2013).

    Article  PubMed  CAS  Google Scholar 

  292. Jacobs, E. M. et al. Results of an international round robin for the quantification of serum non-transferrin-bound iron: need for defining standardization and a clinically relevant isoform. Anal. Biochem. 341, 241–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  293. Choengchan, N. et al. Tandem measurements of iron and creatinine by cross injection analysis with application to urine from thalassemic patients. Talanta 133, 52–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  294. Wilmer, M. J., Christensen, E. I., Van Den Heuvel, L. P., Monnens, L. A. & Levtchenko, E. N. Urinary protein excretion pattern and renal expression of megalin and cubilin in nephropathic cystinosis. Am. J. Kidney Dis. 51, 893–903 (2008).

    Article  CAS  PubMed  Google Scholar 

  295. Artunc, F. & Risler, T. Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease. Nephrol. Dial. Transpl. 22, 2900–2908 (2007).

    Article  CAS  Google Scholar 

  296. Goes, M. A. et al. Serum-soluble Fas and serum levels of erythropoietin in chronic kidney disease. Clin. Nephrol. 73, 7–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  297. Mercadal, L. et al. Timing and determinants of erythropoietin deficiency in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 7, 35–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  298. Moulouel, B. et al. Hepcidin regulates intrarenal iron handling at the distal nephron. Kidney Int. 84, 756–766 (2013).

    Article  CAS  PubMed  Google Scholar 

  299. Gelderman, M. P. et al. Reversal of hemochromatosis by apotransferrin in non-transfused and transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice. Haematologica 100, 611–622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Yatmark, P. et al. Iron distribution and histopathological study of the effects of deferoxamine and deferiprone in the kidneys of iron overloaded beta-thalassemic mice. Exp. Toxicol. Pathol. 68, 427–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  301. Lai, M. E. et al. Renal function in patients with beta-thalassaemia major: a long-term follow-up study. Nephrol. Dial. Transplant. 27, 3547–3551 (2012).

    Article  CAS  PubMed  Google Scholar 

  302. Smolkin, V. et al. Renal function in children with beta-thalassemia major and thalassemia intermedia. Pediatr. Nephrol. 23, 1847–1851 (2008).

    Article  PubMed  Google Scholar 

  303. Hashemieh, M., Azarkeivan, A., Akhlaghpoor, S., Shirkavand, A. & Sheibani, K. T2-star (T2*) magnetic resonance imaging for assessment of kidney iron overload in thalassemic patients. Arch. Iran. Med. 15, 91–94 (2012).

    PubMed  Google Scholar 

  304. Sen, V. et al. Urinary early kidney injury molecules in children with beta-thalassemia major. Ren. Fail. 37, 607–613 (2015).

    Article  CAS  PubMed  Google Scholar 

  305. Nakatani, S. et al. Urinary iron excretion is associated with urinary full-length megalin and renal oxidative stress in chronic kidney disease. Kidney Blood Press. Res. 43, 458–470 (2018).

    Article  CAS  PubMed  Google Scholar 

  306. Nankivell, B. J., Boadle, R. A. & Harris, D. C. Iron accumulation in human chronic renal disease. Am. J. Kidney Dis. 20, 580–584 (1992).

    Article  CAS  PubMed  Google Scholar 

  307. Wang, H. et al. Iron deposition in renal biopsy specimens from patients with kidney diseases. Am. J. Kidney Dis. 38, 1038–1044 (2001).

    Article  CAS  PubMed  Google Scholar 

  308. Deman, A. et al. Altered antioxidant defence in a mouse adriamycin model of glomerulosclerosis. Nephrol. Dial. Transplant. 16, 147–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  309. Dominguez, J. H., Liu, Y. & Kelly, K. J. Renal iron overload in rats with diabetic nephropathy. Physiol. Rep. 3, e12654 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  310. Alfrey, A. C., Froment, D. H. & Hammond, W. S. Role of iron in the tubulo-interstitial injury in nephrotoxic serum nephritis. Kidney Int. 36, 753–759 (1989).

    Article  CAS  PubMed  Google Scholar 

  311. Alfrey, A. C. & Hammond, W. S. Renal iron handling in the nephrotic syndrome. Kidney Int. 37, 1409–1413 (1990).

    Article  CAS  PubMed  Google Scholar 

  312. Ueda, N., Baliga, R. & Shah, S. V. Role of ‘catalytic’ iron in an animal model of minimal change nephrotic syndrome. Kidney Int. 49, 370–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  313. Gutierrez, E. et al. Oxidative stress, macrophage infiltration and CD163 expression are determinants of long-term renal outcome in macrohematuria-induced acute kidney injury of IgA nephropathy. Nephron Clin. Pract. 121, c42–c53 (2012).

    Article  CAS  PubMed  Google Scholar 

  314. Akrawinthawong, K. et al. Urine catalytic iron and neutrophil gelatinase-associated lipocalin as companion early markers of acute kidney injury after cardiac surgery: a prospective pilot study. Cardiorenal Med. 3, 7–16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Baek, J. H. et al. Renal toxicodynamic effects of extracellular hemoglobin after acute exposure. Toxicol. Sci. 166, 180–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  316. Young, G. H. et al. Hemojuvelin modulates iron stress during acute kidney injury: improved by furin inhibitor. Antioxid. Redox Signal. 20, 1181–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Xie, G. L., Zhu, L., Zhang, Y. M., Zhang, Q. N. & Yu, Q. Change in iron metabolism in rats after renal ischemia/reperfusion injury. PLOS ONE. 12, e0175945 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.P.L van Swelm and D.W. Swinkels researched the data for the article and wrote the manuscript. J.F.M. Wetzels contributed substantially to discussions on the content and editing of the manuscript before submission.

Corresponding author

Correspondence to Dorine. W. Swinkels.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks S. Swaminathan and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fenton reaction

The reaction in which Fe2+ catalyses the generation of highly reactive hydroxyl radicals via its reaction with hydrogen peroxide (H2O2), which is a product of mitochondrial oxidative respiration.

Reticuloendothelial system

Also known as the mononuclear phagocytic system. The reticuloendothelial system comprises the phagocytic cells (primarily monocytes and macrophages) that are located in reticular connective tissue.

Fanconi syndrome

A syndrome that results in inadequate reabsorption of filtered substrates, particularly low-molecular-weight proteins and peptides, in the renal proximal tubules. The syndrome can be caused by various congenital or acquired diseases.

Dent disease

A rare X-linked recessive disorder that affects the renal proximal tubules and is characterized by proteinuria, hypercalciuria, formation of calcium kidney stones, nephrocalcinosis and chronic kidney disease. Dent disease is a cause of Fanconi syndrome.

Lowe syndrome

Also known as oculocerebrorenal syndrome. A rare X-linked recessive disorder characterized by congenital cataracts, hypotonia, intellectual disability, proximal tubular acidosis, aminoaciduria and low-molecular-weight proteinuria. Lowe syndrome is a cause of Fanconi syndrome.

Mendelian randomization study

A study that uses measured variation in genes of known function to examine the causal effect of modifiable exposure on disease in observational studies.

Endoplasmic reticulum (ER) stress

Endoplasmic reticulum (ER) stress results in impairment in protein folding in the ER and the accumulation of misfolded proteins. It can be caused by disturbances in cellular processes including redox regulation and calcium regulation, glucose deprivation and viral infection.

Damage-associated molecular patterns

(DAMPs). Also known as danger-associated molecular patterns, danger signals and alarmins. Endogenous molecules that are released from damaged or dying cells and can initiate and perpetuate a non-infectious inflammatory response.

Haemoproteins

Proteins that are conjugated to haem. Examples include catalase, cytochrome, haemoglobin and myoglobin.

Iron-loading anaemias

Anaemias that are characterized by high serum iron, transferrin saturation and ferritin levels, as well as iron deposits in parenchymal cells and reticuloendothelial tissue with or without organ dysfunction.

Anticalins

Artificial proteins that can bind to antigens (either proteins or small molecules).

Aptamers

Oligonucleotide or peptide molecules that bind to specific target molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Swelm, R.P.L., Wetzels, J.F.M. & Swinkels, D.W. The multifaceted role of iron in renal health and disease. Nat Rev Nephrol 16, 77–98 (2020). https://doi.org/10.1038/s41581-019-0197-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0197-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing