Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state

A Publisher Correction to this article was published on 09 March 2020

This article has been updated

Abstract

Nonalcoholic fatty liver disease (NAFLD) is an increasing global public health burden. NAFLD is strongly associated with type 2 diabetes mellitus, obesity and cardiovascular disease and begins with intrahepatic triacylglycerol accumulation. Under healthy conditions, the liver regulates lipid metabolism to meet systemic energy needs in the fed and fasted states. The processes of fatty acid uptake, fatty acid synthesis and the intracellular partitioning of fatty acids into storage, oxidation and secretion pathways are tightly regulated. When one or more of these processes becomes dysregulated, excess lipid accumulation can occur. Although genetic and environmental factors have been implicated in the development of NAFLD, it remains unclear why an imbalance in these pathways begins. The regulation of fatty acid partitioning occurs at several points, including during triacylglycerol synthesis, lipid droplet formation and lipolysis. These processes are influenced by enzyme function, intake of dietary fats and sugars and whole-body metabolism, and are further affected by the presence of obesity or insulin resistance. Insight into how the liver controls fatty acid metabolism in health and how these processes might be affected in disease would offer the potential for new therapeutic treatments for NAFLD to be developed.

Key points

  • Intrahepatic triacylglycerol (IHTAG) accumulation occurs through an imbalance between fatty acid uptake and synthesis and fatty acid disposal; however, the exact mechanisms by which this occurs in humans are poorly understood.

  • Insulin signalling seems to be an important factor that links intrahepatic and extrahepatic fatty acid metabolism; hepatic insulin signalling regulates pathways linked to fatty acid uptake, synthesis and storage.

  • Both non-esterified fatty acid delivery and fatty acid synthesis through de novo lipogenesis seem to be upregulated during IHTAG accumulation, which might be worsened by high saturated fat and high free sugar intake, respectively.

  • Secretion of IHTAG as VLDL–TAG and partitioning into oxidation pathways might have a dynamic response, depending on disease state; the regulation of the pathways requires further investigation.

  • Dietary composition influences insulin levels as well as tissue nutrient exposure; the interaction between these pathways requires optimization of physiologically relevant models of hepatic fat and carbohydrate metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hepatic and whole-body pathways of fatty acid metabolism.
Fig. 2: Overview of hepatocellular partitioning of fatty acids.

Similar content being viewed by others

Change history

  • 09 March 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Kmieć, Z. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 161, III–XIII, 1–151 (2001).

    Google Scholar 

  2. Brinkmann, A., Katz, N., Sasse, D. & Jungermann, K. Increase of the gluconeogenic and decrease of the glycolytic capacity of rat liver with a change of the metabolic zonation after partial hepatectomy. Hoppe Seylers Z. Physiol. Chem. 359, 1561–1571 (1978).

    CAS  PubMed  Google Scholar 

  3. Schleicher, J., Dahmen, U., Guthke, R. & Schuster, S. Zonation of hepatic fat accumulation: insights from mathematical modelling of nutrient gradients and fatty acid uptake. J. R. Soc. Interface 14, 20170443 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Hodson, L. & Frayn, K. N. Hepatic fatty acid partitioning. Curr. Opin. Lipidol. 22, 216–224 (2011).

    CAS  PubMed  Google Scholar 

  5. Havel, R. J., Kane, J. P., Balasse, E. O., Segel, N. & Basso, L. V. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest. 49, 2017–2035 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ontko, J. A. Metabolism of free fatty acids in isolated liver cells. Factors affecting the partition between esterification and oxidation. J. Biol. Chem. 247, 1788–1800 (1972).

    CAS  PubMed  Google Scholar 

  7. Babin, P. J. & Gibbons, G. F. The evolution of plasma cholesterol: direct utility or a “spandrel” of hepatic lipid metabolism? Prog. Lipid Res. 48, 73–91 (2009).

    CAS  PubMed  Google Scholar 

  8. Diraison, F. & Beylot, M. Role of human liver lipogenesis and reesterification in triglycerides secretion and in FFA reesterification. Am. J. Physiol. 274, E321–E327 (1998).

    CAS  PubMed  Google Scholar 

  9. Sidossis, L. S., Mittendorfer, B., Walser, E., Chinkes, D. & Wolfe, R. R. Hyperglycemia-induced inhibition of splanchnic fatty acid oxidation increases hepatic triacylglycerol secretion. Am. J. Physiol. 275, E798–E805 (1998).

    CAS  PubMed  Google Scholar 

  10. Adams, L. A., Sanderson, S., Lindor, K. D. & Angulo, P. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J. Hepatol. 42, 132–138 (2005).

    PubMed  Google Scholar 

  11. Angulo, P. Long-term mortality in nonalcoholic fatty liver disease: is liver histology of any prognostic significance? Hepatology 51, 373–375 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Ekstedt, M. et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44, 865–873 (2006).

    CAS  PubMed  Google Scholar 

  13. Bang, K. B. & Cho, Y. K. Comorbidities and metabolic derangement of NAFLD. J. Lifestyle Med. 5, 7–13 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. European Association for the Study of the Liver, European Association for the Study of Diabetes & European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Google Scholar 

  15. Romero-Gomez, M., Zelber-Sagi, S. & Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 67, 829–846 (2017).

    PubMed  Google Scholar 

  16. Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).

    CAS  PubMed  Google Scholar 

  17. Sahini, N. & Borlak, J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog. Lipid Res. 54, 86–112 (2014).

    CAS  PubMed  Google Scholar 

  18. Severson, T. J., Besur, S. & Bonkovsky, H. L. Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J. Gastroenterol. 22, 6742–6756 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Piche, M. E., Parry, S. A., Karpe, F. & Hodson, L. Chylomicron-derived fatty acid spillover in adipose tissue: a signature of metabolic health? J. Clin. Endocrinol. Metab. 103, 25–34 (2018).

    PubMed  Google Scholar 

  20. Zechner, R. et al. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15, 279–291 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McQuaid, S. E. et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 60, 47–55 (2011).

    CAS  PubMed  Google Scholar 

  22. Ruge, T. et al. Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J. Clin. Endocrinol. Metab. 94, 1781–1788 (2009).

    CAS  PubMed  Google Scholar 

  23. Hodson, L. et al. The contribution of splanchnic fat to VLDL triglyceride is greater in insulin-resistant than insulin-sensitive men and women: studies in the postprandial state. Diabetes 56, 2433–2441 (2007).

    CAS  PubMed  Google Scholar 

  24. Pramfalk, C. et al. Fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes 65, 1858–1867 (2016).

    CAS  PubMed  Google Scholar 

  25. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barrows, B. R. & Parks, E. J. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J. Clin. Endocrinol. Metab. 91, 1446–1452 (2006).

    CAS  PubMed  Google Scholar 

  27. Hodson, L. et al. Greater dietary fat oxidation in obese compared with lean men: an adaptive mechanism to prevent liver fat accumulation? Am. J. Physiol. Endocrinol. Metab. 299, E584–E592 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vedala, A., Wang, W., Neese, R. A., Christiansen, M. P. & Hellerstein, M. K. Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. J. Lipid Res. 47, 2562–2574 (2006).

    CAS  PubMed  Google Scholar 

  29. Nestel, P. J. Relationship between FFA flux and TGFA influx in plasma before and during the infusion of insulin. Metabolism 16, 1123–1132 (1967).

    CAS  PubMed  Google Scholar 

  30. Holt, H. B. et al. Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia 49, 141–148 (2006).

    CAS  PubMed  Google Scholar 

  31. Karpe, F., Dickmann, J. R. & Frayn, K. N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60, 2441–2449 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Langin, D. & Arner, P. Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol. Metab. 17, 314–320 (2006).

    CAS  PubMed  Google Scholar 

  33. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Luukkonen, P. K. et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 41, 1732–1739 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Howe, H. R. 3rd et al. Increased adipose tissue lipolysis after a 2-week high-fat diet in sedentary overweight/obese men. Metabolism 60, 976–981 (2011).

    CAS  PubMed  Google Scholar 

  36. Mashek, D. G. Hepatic fatty acid trafficking: multiple forks in the road. Adv. Nutr. 4, 697–710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Immonen, H. et al. Increased liver fatty acid uptake is partly reversed and liver fat content normalized after bariatric surgery. Diabetes Care 41, 368–371 (2018).

    CAS  PubMed  Google Scholar 

  38. Iozzo, P. et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139, 846–856 (2010).

    CAS  PubMed  Google Scholar 

  39. Grundy, S. M. & Mok, H. Y. Chylomicron clearance in normal and hyperlipidemic man. Metabolism 25, 1225–1239 (1976).

    CAS  PubMed  Google Scholar 

  40. Hultin, M., Savonen, R. & Olivecrona, T. Chylomicron metabolism in rats: lipolysis, recirculation of triglyceride-derived fatty acids in plasma FFA, and fate of core lipids as analyzed by compartmental modelling. J. Lipid Res. 37, 1022–1036 (1996).

    CAS  PubMed  Google Scholar 

  41. Cooper, A. D. Hepatic uptake of chylomicron remnants. J. Lipid Res. 38, 2173–2192 (1997).

    CAS  PubMed  Google Scholar 

  42. Havel, R. J. & Hamilton, R. L. Hepatic catabolism of remnant lipoproteins: where the action is. Arterioscler. Thromb. Vasc. Biol. 24, 213–215 (2004).

    CAS  PubMed  Google Scholar 

  43. Craig, W. Y. & Cooper, A. D. Effects of chylomicron remnants and beta-VLDL on the class and composition of newly secreted lipoproteins by HepG2 cells. J. Lipid Res. 29, 299–308 (1988).

    CAS  PubMed  Google Scholar 

  44. Wu, X., Sakata, N., Dixon, J. & Ginsberg, H. N. Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre- and post-translational mechanisms. J. Lipid Res. 35, 1200–1210 (1994).

    CAS  PubMed  Google Scholar 

  45. Suppli, M. P. et al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G462–G472 (2019).

    CAS  PubMed  Google Scholar 

  46. Mamo, J. C. et al. Postprandial dyslipidemia in men with visceral obesity: an effect of reduced LDL receptor expression? Am. J. Physiol. Endocrinol. Metab. 281, E626–E632 (2001).

    CAS  PubMed  Google Scholar 

  47. Min, H. K. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15, 665–674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bieghs, V. et al. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLOS ONE 7, e30668 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Woollett, L. A., Spady, D. K. & Dietschy, J. M. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res. 33, 77–88 (1992).

    CAS  PubMed  Google Scholar 

  50. Hazarika, A., Kalita, H., Kalita, M. C. & Devi, R. Withdrawal from high-carbohydrate, high-saturated-fat diet changes saturated fat distribution and improves hepatic low-density-lipoprotein receptor expression to ameliorate metabolic syndrome in rats. Nutrition 38, 95–101 (2017).

    CAS  PubMed  Google Scholar 

  51. Sanders, F. W. & Griffin, J. L. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol. Rev. Camb. Philos. Soc. 91, 452–468 (2016).

    PubMed  Google Scholar 

  52. Foster, D. W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122, 1958–1959 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McGarry, J. D., Takabayashi, Y. & Foster, D. W. The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem. 253, 8294–8300 (1978).

    CAS  PubMed  Google Scholar 

  54. Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695 (2014).

    CAS  PubMed  Google Scholar 

  55. Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Law, B. A. et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 32, 1403–1416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Field, C. J., Ryan, E. A., Thomson, A. B. & Clandinin, M. T. Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. J. Biol. Chem. 265, 11143–11150 (1990).

    CAS  PubMed  Google Scholar 

  58. Leamy, A. K. et al. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells. J. Lipid Res. 55, 1478–1488 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003).

    CAS  PubMed  Google Scholar 

  60. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).

    CAS  PubMed  Google Scholar 

  61. Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J. & Postic, C. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab. 24, 257–268 (2013).

    CAS  PubMed  Google Scholar 

  62. Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14, 2819–2830 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Linden, A. G. et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J. Lipid Res. 59, 475–487 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, G., Liang, G., Ou, J., Goldstein, J. L. & Brown, M. S. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl Acad. Sci. USA 101, 11245–11250 (2004).

    CAS  PubMed  Google Scholar 

  65. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    CAS  PubMed  Google Scholar 

  66. Diraison, F., Moulin, P. & Beylot, M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 29, 478–485 (2003).

    CAS  PubMed  Google Scholar 

  67. Lee, J. J. et al. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 101, 34–43 (2015).

    CAS  PubMed  Google Scholar 

  68. Marques-Lopes, I., Ansorena, D., Astiasaran, I., Forga, L. & Martinez, J. A. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am. J. Clin. Nutr. 73, 253–261 (2001).

    CAS  PubMed  Google Scholar 

  69. Schwarz, J. M., Linfoot, P., Dare, D. & Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 77, 43–50 (2003).

    CAS  PubMed  Google Scholar 

  70. Higuchi, N. et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. 38, 1122–1129 (2008).

    CAS  PubMed  Google Scholar 

  71. Kohjima, M. et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med. 21, 507–511 (2008).

    CAS  PubMed  Google Scholar 

  72. Lima-Cabello, E. et al. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin. Sci. 120, 239–250 (2011).

    CAS  PubMed  Google Scholar 

  73. Hudgins, L. C. et al. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J. Lipid Res. 41, 595–604 (2000).

    CAS  PubMed  Google Scholar 

  74. Wilke, M. S. et al. Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 52, 1628–1637 (2009).

    CAS  PubMed  Google Scholar 

  75. Janevski, M. et al. Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat. Food Funct. 3, 141–149 (2012).

    CAS  PubMed  Google Scholar 

  76. Chong, M. F., Fielding, B. A. & Frayn, K. N. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr. 85, 1511–1520 (2007).

    CAS  PubMed  Google Scholar 

  77. Sun, S. Z. & Empie, M. W. Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr. Metab. 9, 89 (2012).

    Google Scholar 

  78. Cox, C. L. et al. Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. Eur J. Clin. Nutr. 66, 201–208 (2012).

    CAS  PubMed  Google Scholar 

  79. Jensen, T. et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J. Hepatol. 68, 1063–1075 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Moore, J. B., Gunn, P. J. & Fielding, B. A. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 6, 5679–5703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Le, K. A. et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 89, 1760–1765 (2009).

    CAS  PubMed  Google Scholar 

  82. Sobrecases, H. et al. Effects of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy men. Diabetes Metab. 36, 244–246 (2010).

    CAS  PubMed  Google Scholar 

  83. Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chiavaroli, L. et al. Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials. J. Am. Heart Assoc. 4, e001700 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Chiu, S. et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 68, 416–423 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chung, M. et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am. J. Clin. Nutr. 100, 833–849 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Asgari-Taee, F. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur. J. Nutr. 58, 1759–1769 (2019).

    CAS  PubMed  Google Scholar 

  88. Wijarnpreecha, K., Thongprayoon, C., Edmonds, P. J. & Cheungpasitporn, W. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. QJM 109, 461–466 (2016).

    CAS  PubMed  Google Scholar 

  89. Kanerva, N., Sandboge, S., Kaartinen, N. E., Mannisto, S. & Eriksson, J. G. Higher fructose intake is inversely associated with risk of nonalcoholic fatty liver disease in older Finnish adults. Am. J. Clin. Nutr. 100, 1133–1138 (2014).

    CAS  PubMed  Google Scholar 

  90. Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004).

    CAS  PubMed  Google Scholar 

  91. Nguyen, P. et al. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92, 272–283 (2008).

    CAS  Google Scholar 

  92. Wang, H., Airola, M. V. & Reue, K. How lipid droplets “TAG” along: glycerolipid synthetic enzymes and lipid storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1131–1145 (2017).

    CAS  PubMed  Google Scholar 

  93. Lewin, T. M. et al. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition. Biochim. Biophys. Acta 1781, 352–358 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yen, C. L., Nelson, D. W. & Yen, M. I. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J. Lipid Res. 56, 489–501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ohsaki, Y. et al. PML isoform II plays a critical role in nuclear lipid droplet formation. J. Cell Biol. 212, 29–38 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Brunt, E. M. Pathology of fatty liver disease. Mod Pathol. 20 (Suppl. 1), S40–S48 (2007).

    CAS  PubMed  Google Scholar 

  97. Tandra, S. et al. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J. Hepatol. 55, 654–659 (2011).

    PubMed  Google Scholar 

  98. Yersiz, H. et al. Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers. Liver Transpl. 19, 437–449 (2013).

    PubMed  Google Scholar 

  99. Fromenty, B., Berson, A. & Pessayre, D. Microvesicular steatosis and steatohepatitis: role of mitochondrial dysfunction and lipid peroxidation. J. Hepatol. 26 (Suppl. 1), 13–22 (1997).

    CAS  PubMed  Google Scholar 

  100. Fromenty, B. & Pessayre, D. Impaired mitochondrial function in microvesicular steatosis. Effects of drugs, ethanol, hormones and cytokines. J. Hepatol. 26 (Suppl. 2), 43–53 (1997).

    CAS  PubMed  Google Scholar 

  101. Takahashi, Y. & Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20, 15539–15548 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Walther, T. C., Chung, J. & Farese, R. V. Jr Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mashek, D. G., Khan, S. A., Sathyanarayan, A., Ploeger, J. M. & Franklin, M. P. Hepatic lipid droplet biology: getting to the root of fatty liver. Hepatology 62, 964–967 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. Cartwright, B. R. & Goodman, J. M. Seipin: from human disease to molecular mechanism. J. Lipid Res. 53, 1042–1055 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pawella, L. M. et al. Perilipin discerns chronic from acute hepatocellular steatosis. J. Hepatol. 60, 633–642 (2014).

    CAS  PubMed  Google Scholar 

  106. Okumura, T. Role of lipid droplet proteins in liver steatosis. J. Physiol. Biochem. 67, 629–636 (2011).

    CAS  PubMed  Google Scholar 

  107. Straub, B. K., Stoeffel, P., Heid, H., Zimbelmann, R. & Schirmacher, P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47, 1936–1946 (2008).

    CAS  PubMed  Google Scholar 

  108. Fujii, H. et al. Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J. Atheroscler. Thromb. 16, 893–901 (2009).

    CAS  PubMed  Google Scholar 

  109. Carr, R. M. et al. Perilipin staining distinguishes between steatosis and nonalcoholic steatohepatitis in adults and children. Clin. Gastroenterol. Hepatol. 15, 145–147 (2017).

    PubMed  Google Scholar 

  110. Missaglia, S., Coleman, R. A., Mordente, A. & Tavian, D. Neutral lipid storage diseases as cellular model to study lipid droplet function. Cells 8, E187 (2019).

    PubMed  Google Scholar 

  111. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Schulze, R. J., Drizyte, K., Casey, C. A. & McNiven, M. A. Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol. Commun. 1, 359–369 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671–684 (2017).

    CAS  PubMed  Google Scholar 

  114. Zubiete-Franco, I. et al. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J. Hepatol. 64, 409–418 (2016).

    CAS  PubMed  Google Scholar 

  115. Tanaka, S. et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64, 1994–2014 (2016).

    CAS  PubMed  Google Scholar 

  116. Schrader, M., Costello, J., Godinho, L. F. & Islinger, M. Peroxisome-mitochondria interplay and disease. J. Inherit. Metab. Dis. 38, 681–702 (2015).

    CAS  PubMed  Google Scholar 

  117. Houten, S. M., Violante, S., Ventura, F. V. & Wanders, R. J. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu. Rev. Physiol. 78, 23–44 (2016).

    CAS  PubMed  Google Scholar 

  118. Sassa, T. & Kihara, A. Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol. Ther. 22, 83–92 (2014).

    CAS  Google Scholar 

  119. Laffel, L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 15, 412–426 (1999).

    CAS  PubMed  Google Scholar 

  120. Pawlak, M., Lefebvre, P. & Staels, B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015).

    CAS  PubMed  Google Scholar 

  121. Gibbons, G. F., Islam, K. & Pease, R. J. Mobilisation of triacylglycerol stores. Biochim. Biophys. Acta 1483, 37–57 (2000).

    CAS  PubMed  Google Scholar 

  122. Kimmel, A. R. & Sztalryd, C. The perilipins: Major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36, 471–509 (2016).

    CAS  PubMed  Google Scholar 

  123. Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14, 804–810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Petersen, K. F., Befroy, D. E., Dufour, S., Rothman, D. L. & Shulman, G. I. Assessment of hepatic mitochondrial oxidation and pyruvate cycling in NAFLD by (13)C magnetic resonance spectroscopy. Cell Metab. 24, 167–171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Croci, I. et al. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut 62, 1625–1633 (2013).

    CAS  PubMed  Google Scholar 

  126. Kotronen, A. et al. Liver fat and lipid oxidation in humans. Liver Int. 29, 1439–1446 (2009).

    CAS  PubMed  Google Scholar 

  127. Bugianesi, E. et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48, 634–642 (2005).

    CAS  PubMed  Google Scholar 

  128. Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).

    CAS  PubMed  Google Scholar 

  129. Palmieri, V. O., Grattagliano, I., Portincasa, P. & Palasciano, G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J. Nutr. 136, 3022–3026 (2006).

    CAS  PubMed  Google Scholar 

  130. Del Ben, M. et al. Serum cytokeratin-18 is associated with NOX2-generated oxidative stress in patients with nonalcoholic fatty liver. Int. J. Hepatol. 2014, 784985 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Del Ben, M. et al. NOX2-generated oxidative stress is associated with severity of ultrasound liver steatosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 14, 81 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Peng, K. Y. et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J. Lipid Res. 59, 1977–1986 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    CAS  PubMed  Google Scholar 

  134. DeLany, J. P., Windhauser, M. M., Champagne, C. M. & Bray, G. A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 72, 905–911 (2000).

    CAS  PubMed  Google Scholar 

  135. Jones, P. J., Pencharz, P. B. & Clandinin, M. T. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am. J. Clin. Nutr. 42, 769–777 (1985).

    CAS  PubMed  Google Scholar 

  136. Schmidt, D. E., Allred, J. B. & Kien, C. L. Fractional oxidation of chylomicron-derived oleate is greater than that of palmitate in healthy adults fed frequent small meals. J. Lipid Res. 40, 2322–2332 (1999).

    CAS  PubMed  Google Scholar 

  137. Hodson, L., Rosqvist, F. & Parry, S. A. The influence of dietary fatty acids on liver fat content and metabolism. Proc. Nutr. Soc. https://doi.org/10.1017/S0029665119000569 (2019).

  138. Rosqvist, F. et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 63, 2356–2368 (2014).

    PubMed  Google Scholar 

  139. Gibbons, G. F., Wiggins, D., Brown, A. M. & Hebbachi, A. M. Synthesis and function of hepatic very-low-density lipoprotein. Biochem. Soc. Trans. 32, 59–64 (2004).

    CAS  PubMed  Google Scholar 

  140. Lehner, R., Lian, J. & Quiroga, A. D. Lumenal lipid metabolism: implications for lipoprotein assembly. Arterioscler. Thromb. Vasc. Biol. 32, 1087–1093 (2012).

    CAS  PubMed  Google Scholar 

  141. Gibbons, G. F., Bartlett, S. M., Sparks, C. E. & Sparks, J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem. J. 287, 749–753 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ohsaki, Y., Cheng, J., Suzuki, M., Fujita, A. & Fujimoto, T. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J. Cell Sci. 121, 2415–2422 (2008).

    CAS  PubMed  Google Scholar 

  143. Hossain, T., Riad, A., Siddiqi, S., Parthasarathy, S. & Siddiqi, S. A. Mature VLDL triggers the biogenesis of a distinct vesicle from the trans-Golgi network for its export to the plasma membrane. Biochem. J. 459, 47–58 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tiwari, S. & Siddiqi, S. A. Intracellular trafficking and secretion of VLDL. Arterioscler. Thromb. Vasc. Biol. 32, 1079–1086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Adiels, M. et al. Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 25, 1697–1703 (2005).

    CAS  PubMed  Google Scholar 

  146. Fabbrini, E. et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134, 424–431 (2008).

    CAS  PubMed  Google Scholar 

  147. Adiels, M., Olofsson, S. O., Taskinen, M. R. & Boren, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 1225–1236 (2008).

    CAS  PubMed  Google Scholar 

  148. Malmstrom, R. et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes 47, 779–787 (1998).

    CAS  PubMed  Google Scholar 

  149. Adiels, M. et al. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50, 2356–2365 (2007).

    CAS  PubMed  Google Scholar 

  150. Adiels, M. et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49, 755–765 (2006).

    CAS  PubMed  Google Scholar 

  151. Higuchi, N. et al. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. Exp. Ther. Med. 2, 1077–1081 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mahdessian, H. et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc. Natl Acad. Sci. USA 111, 8913–8918 (2014).

    CAS  PubMed  Google Scholar 

  153. Sliz, E. et al. NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects. Hum. Mol. Genet. 27, 2214–2223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Umpleby, A. M. et al. Impact of liver fat on the differential partitioning of hepatic triacylglycerol into VLDL subclasses on high and low sugar diets. Clin. Sci. 131, 2561–2573 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Parks, E. J., Krauss, R. M., Christiansen, M. P., Neese, R. A. & Hellerstein, M. K. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J. Clin. Invest. 104, 1087–1096 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Gill, J. M. et al. Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL. Am. J. Clin. Nutr. 78, 47–56 (2003).

    CAS  PubMed  Google Scholar 

  157. Hazlehurst, J. M., Woods, C., Marjot, T., Cobbold, J. F. & Tomlinson, J. W. Non-alcoholic fatty liver disease and diabetes. Metabolism 65, 1096–1108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Green, C. J., Marjot, T., Tomlinson, J. W. & Hodson, L. Of mice and men: is there a future for metformin in the treatment of hepatic steatosis? Diabetes Obes. Metab. 21, 749–760 (2019).

    PubMed  Google Scholar 

  159. Cussons, A. J., Watts, G. F., Mori, T. A. & Stuckey, B. G. Omega-3 fatty acid supplementation decreases liver fat content in polycystic ovary syndrome: a randomized controlled trial employing proton magnetic resonance spectroscopy. J. Clin. Endocrinol. Metab. 94, 3842–3848 (2009).

    CAS  PubMed  Google Scholar 

  160. de Castro, G. S. & Calder, P. C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 37, 37–55 (2018).

    PubMed  Google Scholar 

  161. Musa-Veloso, K. et al. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr. Rev. 76, 581–602 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Tanaka, N. et al. Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 42, 413–418 (2008).

    CAS  PubMed  Google Scholar 

  163. Hodson, L. et al. Docosahexaenoic acid enrichment in NAFLD is associated with improvements in hepatic metabolism and hepatic insulin sensitivity: a pilot study. Eur J. Clin. Nutr. 71, 1251 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 394–406 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhu, L. et al. Lipid in the livers of adolescents with nonalcoholic steatohepatitis: combined effects of pathways on steatosis. Metabolism 60, 1001–1011 (2011).

    CAS  PubMed  Google Scholar 

  166. Greco, D. et al. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1281–G1287 (2008).

    CAS  PubMed  Google Scholar 

  167. Zhou, J. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 134, 556–567 (2008).

    CAS  PubMed  Google Scholar 

  168. Li, Y. et al. CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J. Lipid Res. 60, 844–855 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Fernandez-Rojo, M. A. & Ramm, G. A. Caveolin-1 function in liver physiology and disease. Trends Mol. Med. 22, 889–904 (2016).

    CAS  PubMed  Google Scholar 

  170. Patni, N. & Garg, A. Congenital generalized lipodystrophies-new insights into metabolic dysfunction. Nat. Rev. Endocrinol. 11, 522–534 (2015).

    CAS  PubMed  Google Scholar 

  171. Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Charlton, M. et al. Differential expression of lumican and fatty acid binding protein-1: new insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology 49, 1375–1384 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Westerbacka, J. et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 56, 2759–2765 (2007).

    CAS  PubMed  Google Scholar 

  174. Quiroga, A. D. & Lehner, R. Pharmacological intervention of liver triacylglycerol lipolysis: the good, the bad and the ugly. Biochem. Pharmacol. 155, 233–241 (2018).

    CAS  PubMed  Google Scholar 

  175. Ruby, M. A. et al. Human carboxylesterase 2 reverses obesity-induced diacylglycerol accumulation and glucose intolerance. Cell Rep. 18, 636–646 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lord, C. C. & Brown, J. M. Distinct roles for alpha-beta hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte 1, 123–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Carr, R. M. & Ahima, R. S. Pathophysiology of lipid droplet proteins in liver diseases. Exp. Cell Res. 340, 187–192 (2016).

    CAS  PubMed  Google Scholar 

  178. Li, C. et al. Roles of acyl-CoA:diacylglycerol acyltransferases 1 and 2 in triacylglycerol synthesis and secretion in primary hepatocytes. Arterioscler. Thromb. Vasc. Biol. 35, 1080–1091 (2015).

    PubMed  Google Scholar 

  179. Goh, V. J. & Silver, D. L. The lipid droplet as a potential therapeutic target in NAFLD. Semin. Liver Dis. 33, 312–320 (2013).

    CAS  PubMed  Google Scholar 

  180. Jump, D. B., Torres-Gonzalez, M. & Olson, L. K. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem. Pharmacol. 81, 649–660 (2011).

    CAS  PubMed  Google Scholar 

  181. Harriman, G. et al. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc. Natl Acad. Sci. USA 113, E1796–E1805 (2016).

    CAS  PubMed  Google Scholar 

  182. Lally, J. S. V. et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174–182 (2019).

    CAS  PubMed  Google Scholar 

  183. Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 1463–1473 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Stiede, K. et al. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: a randomized, double-blind, crossover study. Hepatology 66, 324–334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. McLaren, D. G. et al. DGAT2 inhibition alters aspects of triglyceride metabolism in rodents but not in non-human primates. Cell Metab. 27, 1236–1248 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.H. is a British Heart Foundation Senior Research Fellow in Basic Science (BHF/15/56/31645).

Author information

Authors and Affiliations

Authors

Contributions

L.H. and P.J.G. contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Leanne Hodson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks P. Tontonoz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodson, L., Gunn, P.J. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol 15, 689–700 (2019). https://doi.org/10.1038/s41574-019-0256-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0256-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing