Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Chromosome instability syndromes

Abstract

Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Repair of DNA interstrand crosslinks.
Fig. 2: DNA double-strand break repair.
Fig. 3: DNA end resection of the 5′ end.
Fig. 4: Dissolution of double Holliday junctions.
Fig. 5: Characteristic features of the chromosome instability syndromes.
Fig. 6: The natural history of the chromosome breakage disorders.

Similar content being viewed by others

References

  1. Bluteau, D. et al. Biallelic inactivation of REV7 is associated with Fanconi anemia. J. Clin. Invest. 126, 3580–3584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ceccaldi, R., Sarangi, P. & D’Andrea, A. D. The Fanconi anaemia pathway: new players and new functions. Nat. Rev. Mol. Cell Biol. 17, 337–349 (2016). This review summarizes the biochemistry and cell biology of the Fanconi pathway proteins.

    Article  CAS  PubMed  Google Scholar 

  3. Knies, K. et al. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J. Clin. Invest. 127, 3013–3027 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neveling, K., Endt, D., Hoehn, H. & Schindler, D. Genotype-phenotype correlations in Fanconi anemia. Mutat. Res. 668, 73–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg, P. S., Tamary, H. & Alter, B. P. How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi anemia in the United States and Israel. Am. J. Med. Genet. A 155a, 1877–1883 (2011).

    Article  PubMed  Google Scholar 

  6. German, J., Sanz, M. M., Ciocci, S., Ye, T. Z. & Ellis, N. A. Syndrome-causing mutations of the BLM gene in persons in the Bloom’s Syndrome Registry. Hum. Mutat. 28, 743–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Waltes, R. et al. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am. J. Hum. Genet. 84, 605–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Auerbach, A. D. Fanconi anemia and its diagnosis. Mutat. Res. 668, 4–10 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reiman, A. et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br. J. Cancer 105, 586–591 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suarez, F. et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J. Clin. Oncol. 33, 202–208 (2015). This paper reports the incidence, presentation and prognosis of malignant disease in those with A-T.

    Article  PubMed  Google Scholar 

  11. Weemaes, C. M. et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr. Scand. 70, 557–564 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Callen, E. et al. A common founder mutation in FANCA underlies the world’s highest prevalence of Fanconi anemia in Gypsy families from Spain. Blood 105, 1946–1949 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Kutler, D. I. & Auerbach, A. D. Fanconi anemia in Ashkenazi Jews. Fam. Cancer 3, 241–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Meyer, S. et al. Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling. J. Med. Genet. 51, 71–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Woods, C. G., Bundey, S. E. & Taylor, A. M. Unusual features in the inheritance of ataxia telangiectasia. Hum. Genet. 84, 555–562 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Crawford, T. O., Skolasky, R. L., Fernandez, R., Rosquist, K. J. & Lederman, H. M. Survival probability in ataxia telangiectasia. Arch. Dis. Child. 91, 610–611 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Varon, R. et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur. J. Hum. Genet. 8, 900–902 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Bouman, A., van Koningsbruggen, S., Karakullukcu, M. B., Schreuder, W. H. & Lakeman, P. Bloom syndrome does not always present with sun-sensitive facial erythema. Eur. J. Med. Genet. 61, 94–97 (2018).

    Article  PubMed  Google Scholar 

  19. Seemanova, E. et al. The Slavic NBN founder mutation: a role for reproductive fitness? PLOS ONE 11, e0167984 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. The International Nijmegen Breakage Syndrome Study Group. Nijmegen breakage syndrome. Arch. Dis. Child. 82, 400–406 (2000).

    Article  Google Scholar 

  21. Chrzanowska, K. H., Gregorek, H., Dembowska-Baginska, B., Kalina, M. A. & Digweed, M. Nijmegen breakage syndrome (NBS). Orphanet J. Rare Dis. 7, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Prokofyeva, D. et al. Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom’s syndrome, is associated with breast cancer in Slavic populations. Breast Cancer Res. Treat. 137, 533–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Cunniff, C., Bassetti, J. A. & Ellis, N. A. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol. Syndromol. 8, 4–23 (2017). A comprehensive paper that discusses the features of BS and its underlying molecular pathology.

    Article  CAS  PubMed  Google Scholar 

  24. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet. 35, 165–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, Y. et al. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood 121, 54–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein Douwel, D. et al. XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–471 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Long, D. T., Raschle, M., Joukov, V. & Walter, J. C. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333, 84–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elia, A. E. et al. RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Mol. Cell 60, 280–293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inano, S. et al. RFWD3-mediated ubiquitination promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Mol. Cell 66, 622–634.e628 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Howlett, N. G., Taniguchi, T., Durkin, S. G., D’Andrea, A. D. & Glover, T. W. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 14, 693–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Rubio, M. L. et al. The Fanconi anemia pathway protects genome integrity from R-loops. PLOS Genet. 11, e1005674 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schwab, R. A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rickman, K. & Smogorzewska, A. Advances in understanding DNA processing and protection at stalled replication forks. J. Cell Biol. 218, 1096–1107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alter, B. P., Rosenberg, P. S. & Brody, L. C. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J. Med. Genet. 44, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Offit, K. et al. Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J. Natl Cancer Inst. 95, 1548–1551 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 39, 162–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Ceccaldi, R. et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11, 36–49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walter, D. et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520, 549–552 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Hira, A. et al. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122, 3206–3209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Langevin, F., Crossan, G. P., Rosado, I. V., Arends, M. J. & Patel, K. J. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Pontel, L. B. et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol. Cell 60, 177–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013). This review summarizes the biochemistry and cell biology of the ATM protein.

    Article  CAS  PubMed  Google Scholar 

  49. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Matsuura, S. et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat. Genet. 19, 179–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Matsumoto, Y. et al. Two unrelated patients with MRE11A mutations and Nijmegen breakage syndrome-like severe microcephaly. DNA Repair 10, 314–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Frappart, P. O. et al. An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat. Med. 11, 538–544 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Shull, E. R. et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 23, 171–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Syed, A. & Tainer, J. A. The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu. Rev. Biochem. 87, 263–294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Devgan, S. S. et al. Homozygous deficiency of ubiquitin-ligase ring-finger protein RNF168 mimics the radiosensitivity syndrome of ataxia-telangiectasia. Cell Death Differ. 18, 1500–1506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stewart, G. S. et al. RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc. Natl Acad. Sci. USA 104, 16910–16915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moreira, M. C. et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet. 29, 189–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Bras, J. et al. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am. J. Hum. Genet. 96, 474–479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Takashima, H. et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet. 32, 267–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Gomez-Herreros, F. et al. TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat. Genet. 46, 516–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Kawale, A. S. & Povirk, L. F. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res. 46, 520–537 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Pommier, Y. et al. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 19, 114–129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sakasai, R. & Iwabuchi, K. The distinctive cellular responses to DNA strand breaks caused by a DNA topoisomerase I poison in conjunction with DNA replication and RNA transcription. Genes Genet. Syst. 90, 187–194 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Alvarez-Quilon, A. et al. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat. Commun. 5, 3347 (2014).

    Article  PubMed  CAS  Google Scholar 

  69. Katyal, S. et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 17, 813–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Das, B. B. et al. Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J. 28, 3667–3680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Segal-Raz, H. et al. ATM-mediated phosphorylation of polynucleotide kinase/phosphatase is required for effective DNA double-strand break repair. EMBO Rep. 12, 713–719 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zolner, A. E. et al. Phosphorylation of polynucleotide kinase/phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage. Nucleic Acids Res. 39, 9224–9237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sykora, P., Wilson, D. M. 3rd & Bohr, V. A. Repair of persistent strand breaks in the mitochondrial genome. Mechanisms Ageing Dev. 133, 169–175 (2012).

    Article  CAS  Google Scholar 

  75. Watters, D. et al. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 274, 34277–34282 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Ambrose, M., Goldstine, J. V. & Gatti, R. A. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum. Mol. Genet. 16, 2154–2164 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Valentin-Vega, Y. A. et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490–1500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moreira, M. C. et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat. Genet. 36, 225–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Alzu, A. et al. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151, 835–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohen, S. et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 9, 533 (2018).

    Google Scholar 

  82. Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Becherel, O. J. et al. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLOS Genet. 9, e1003435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yeo, A. J. et al. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLOS ONE 9, e90219 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Suraweera, A. et al. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum. Mol. Genet. 18, 3384–3396 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, M. & Verbeek, D. S. Why do so many genetic insults lead to Purkinje cell degeneration and spinocerebellar ataxia? Neurosci. Lett. 668, 49–57 (2019).

    Article  CAS  Google Scholar 

  87. Soong, B. W. & Morrison, P. J. Spinocerebellar ataxias. Handb. Clin. Neurol. 155, 143–174 (2018).

    Article  PubMed  Google Scholar 

  88. Choy, K. R. & Watters, D. J. Neurodegeneration in ataxia-telangiectasia: multiple roles of ATM kinase in cellular homeostasis. Dev. Dyn. 247, 33–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Pfeiffer, A. et al. Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4. EMBO J. 36, 1066–1083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, Y. & West, S. C. More complexity to the Bloom’s syndrome complex. Genes Dev. 22, 2737–2742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bizard, A. H. & Hickson, I. D. The dissolution of double Holliday junctions. Cold Spring Harb. Perspect. Biol. 6, a016477 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chaganti, R. S., Schonberg, S. & German, J. A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc. Natl Acad. Sci. USA 71, 4508–4512 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin, C. A. et al. Mutations in TOP3A cause a Bloom syndrome-like disorder. Am. J. Hum. Genet. 103, 221–231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chu, W. K. & Hickson, I. D. RecQ helicases: multifunctional genome caretakers. Nat. Rev. Cancer 9, 644–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Nimonkar, A. V., Ozsoy, A. Z., Genschel, J., Modrich, P. & Kowalczykowski, S. C. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl Acad. Sci. USA 105, 16906–16911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ouyang, K. J. et al. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLOS Biol. 7, e1000252 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bhattacharyya, S., Sandy, A. & Groden, J. Unwinding protein complexes in ALTernative telomere maintenance. J. Cell. Biochem. 109, 7–15 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Deans, A. J. & West, S. C. FANCM connects the genome instability disorders Bloom’s syndrome and Fanconi anemia. Mol. Cell 36, 943–953 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Dhar, S. & Brosh, R. M. BLM’s balancing act and the involvement of FANCJ in DNA repair. Cell Cycle 17, 2207–2220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Meetei, A. R. et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell. Biol. 23, 3417–3426 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. de Renty, C. & Ellis, N. A. Bloom’s syndrome: why not premature aging?: a comparison of the BLM and WRN helicases. Ageing Res. Rev. 33, 36–51 (2017).

    Article  PubMed  CAS  Google Scholar 

  102. Davies, S. L., North, P. S. & Hickson, I. D. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat. Struct. Mol. Biol. 14, 677–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Drosopoulos, W. C., Kosiyatrakul, S. T. & Schildkraut, C. L. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J. Cell Biol. 210, 191–208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tippana, R., Hwang, H., Opresko, P. L., Bohr, V. A. & Myong, S. Single-molecule imaging reveals a common mechanism shared by G-quadruplex-resolving helicases. Proc. Natl Acad. Sci. USA 113, 8448–8453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Biebricher, A. et al. PICH: a DNA translocase specially adapted for processing anaphase bridge DNA. Mol. Cell 51, 691–701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sarlos, K. et al. Reconstitution of anaphase DNA bridge recognition and disjunction. Nat. Struct. Mol. Biol. 25, 868–876 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Langlois, R. G., Bigbee, W. L., Jensen, R. H. & German, J. Evidence for increased in vivo mutation and somatic recombination in Bloom’s syndrome. Proc. Natl Acad. Sci. USA 86, 670–674 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kutler, D. I. et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 101, 1249–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Quentin, S. et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117, e161–e170 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Huck, K. et al. Delayed diagnosis and complications of Fanconi anaemia at advanced age – a paradigm. Br. J. Haematol. 133, 188–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Petryk, A. et al. Endocrine disorders in Fanconi anemia: recommendations for screening and treatment. J. Clin. Endocrinol. Metab. 100, 803–811 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Oostra, A. B., Nieuwint, A. W., Joenje, H. & de Winter, J. P. Diagnosis of Fanconi anemia: chromosomal breakage analysis. Anemia 2012, 238731 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chandrasekharappa, S. C. et al. Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood 121, e138–e148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schneider, M., Chandler, K., Tischkowitz, M. & Meyer, S. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults. Clin. Genet. 88, 13–24 (2015). This paper describes the clinical management of patients with FA.

    Article  CAS  PubMed  Google Scholar 

  115. Sathyanarayana, V. et al. Patterns and frequency of renal abnormalities in Fanconi anaemia: implications for long-term management. Pediatr. Nephrol. 33, 1547–1551 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Stivaros, S. M. et al. Central nervous system abnormalities in Fanconi anaemia: patterns and frequency on magnetic resonance imaging. Br. J. Radiol. 88, 20150088 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Crawford, T. O. et al. Quantitative neurologic assessment of ataxia-telangiectasia. Neurology 54, 1505–1509 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. McGrath-Morrow, S. A. et al. Pulmonary function in children and young adults with ataxia telangiectasia. Pediatr. Pulmonol. 49, 84–90 (2014). This paper reports the incidence of an important clinical feature (pulmonary function) in children and young adults with classic A-T.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sedgwick, R. P. & Boder E. in Vinken, P. J. & Bruyn, G. W. (eds) Handbook of Clinical Neurology 267–39 (North Holland, 1972).

  120. Gilad, S. et al. Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am. J. Hum. Genet. 62, 551–561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Micol, R. et al. Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J. Allergy Clin. Immunol. 128, 382–389.e381 (2011).

    Article  PubMed  Google Scholar 

  122. Schon, K. et al. Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia. Ann. Neurol. 85, 170–180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Verhagen, M. M. et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum. Mutat. 33, 561–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Nowak-Wegrzyn, A., Crawford, T. O., Winkelstein, J. A., Carson, K. A. & Lederman, H. M. Immunodeficiency and infections in ataxia-telangiectasia. J. Pediatr. 144, 505–511 (2004).

    Article  PubMed  Google Scholar 

  125. Crawford, T. O. Ataxia telangiectasia. Semin. Pediatr. Neurol. 5, 287–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Nissenkorn, A. et al. Endocrine abnormalities in ataxia telangiectasia: findings from a national cohort. Pediatr. Res. 79, 889–894 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Cabana, M. D., Crawford, T. O., Winkelstein, J. A., Christensen, J. R. & Lederman, H. M. Consequences of the delayed diagnosis of ataxia-telangiectasia. Pediatrics 102, 98–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Alterman, N. et al. Ataxia-telangiectasia: mild neurological presentation despite null ATM mutation and severe cellular phenotype. Am. J. Med. Genet. A 143a, 1827–1834 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Worth, P. F. et al. Very mild presentation in adult with classical cellular phenotype of ataxia telangiectasia. Mov. Disord. 28, 524–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Sun, X. et al. Early diagnosis of ataxia-telangiectasia using radiosensitivity testing. J. Pediatr. 140, 724–731 (2002).

    Article  PubMed  Google Scholar 

  131. Driessen, G. J. et al. Antibody deficiency in patients with ataxia telangiectasia is caused by disturbed B- and T-cell homeostasis and reduced immune repertoire diversity. J. Allergy Clin. Immunol. 131, 1367–1375.e9 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Sadighi Akha, A. A., Humphrey, R. L., Winkelstein, J. A., Loeb, D. M. & Lederman, H. M. Oligo-/monoclonal gammopathy and hypergammaglobulinemia in ataxia-telangiectasia. A study of 90 patients. Medicine 78, 370–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Stray-Pedersen, A. et al. Alpha fetoprotein is increasing with age in ataxia-telangiectasia. Eur. J. Paediatr. Neurol. 11, 375–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Hellani, A., Lauge, A., Ozand, P., Jaroudi, K. & Coskun, S. Pregnancy after preimplantation genetic diagnosis for ataxia telangiectasia. Mol. Hum. Reprod. 8, 785–788 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Verlinsky, Y. et al. Preimplantation diagnosis for immunodeficiencies. Reprod. Biomed. Online 14, 214–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Borte, S. et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood 119, 2552–2555 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Mallott, J. et al. Newborn screening for SCID identifies patients with ataxia telangiectasia. J. Clin. Immunol. 33, 540–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Chrzanowska, K. H. et al. High prevalence of primary ovarian insufficiency in girls and young women with Nijmegen breakage syndrome: evidence from a longitudinal study. J. Clin. Endocrinol. Metab. 95, 3133–3140 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Pastorczak, A., Szczepanski, T. & Mlynarski, W. Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. Eur. J. Med. Genet. 59, 126–132 (2016).

    Article  PubMed  Google Scholar 

  140. Gregorek, H., Chrzanowska, K. H., Michalkiewicz, J., Syczewska, M. & Madalinski, K. Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre. Clin. Exp. Immunol. 130, 319–324 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Michalkiewicz, J. et al. Abnormalities in the T and NK lymphocyte phenotype in patients with Nijmegen breakage syndrome. Clin. Exp. Immunol. 134, 482–490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wolska-Kusnierz, B. et al. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options – a retrospective analysis. J. Clin. Immunol. 35, 538–549 (2015). An analysis of the immunodeficiency that is an important part of the presentation of NBS.

    Article  CAS  PubMed  Google Scholar 

  143. Bakhshi, S. et al. Medulloblastoma with adverse reaction to radiation therapy in Nijmegen breakage syndrome. J. Pediatr. Hematol. Oncol. 25, 248–251 (2003).

    Article  PubMed  Google Scholar 

  144. Distel, L., Neubauer, S., Varon, R., Holter, W. & Grabenbauer, G. Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen breakage syndrome. Med. Pediatr. Oncol. 41, 44–48 (2003).

    Article  PubMed  Google Scholar 

  145. Taalman, R. D., Jaspers, N. G., Scheres, J. M., de Wit, J. & Hustinx, T. W. Hypersensitivity to ionizing radiation, in vitro, in a new chromosomal breakage disorder, the Nijmegen breakage syndrome. Mutat. Res. 112, 23–32 (1983).

    CAS  PubMed  Google Scholar 

  146. Patel, J. P. et al. Nijmegen breakage syndrome detected by newborn screening for T cell receptor excision circles (TRECs). J. Clin. Immunol. 35, 227–233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Flanagan, M. & Cunniff, C. M. Bloom Syndrome. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1398/ (updated February 14, 2019).

  148. Cunniff, C. et al. Health supervision for people with Bloom syndrome. Am. J. Med. Genet. A 176, 1872–1881 (2018). This paper offers recommendations for diagnosis, screening and symptom treatment in BS.

    Article  PubMed  Google Scholar 

  149. Vallance, H. & Ford, J. Carrier testing for autosomal-recessive disorders. Crit. Rev. Clin. Lab. Sci. 40, 473–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Kornreich, R., Ekstein, J., Edelmann, L. & Desnick, R. J. Premarital and prenatal screening for cystic fibrosis: experience in the Ashkenazi Jewish population. Genet. Med. 6, 415–420 (2004).

    Article  PubMed  Google Scholar 

  151. Scheckenbach, K. et al. Treatment of the bone marrow failure in Fanconi anemia patients with danazol. Blood Cells Mol. Dis. 48, 128–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Peffault de Latour, R. et al. Allogeneic hematopoietic stem cell transplantation in Fanconi anemia: the European Group for Blood and Marrow Transplantation experience. Blood 122, 4279–4286 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Bierings, M. et al. Transplant results in adults with fanconi anaemia. Br J. Haematol. 180, 100–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Mehta, P. A. et al. Radiation-free, alternative-donor HCT for Fanconi anemia patients: results from a prospective multi-institutional study. Blood 129, 2308–2315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Alter, B. P., Giri, N., Savage, S. A. & Rosenberg, P. S. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica 103, 30–39 (2018). This paper reports the cancer occurrence in four bone marrow failure disorders, including FA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rosenberg, P. S., Alter, B. P. & Ebell, W. Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematologica 93, 511–517 (2008).

    Article  PubMed  Google Scholar 

  157. Kutler, D. I. et al. Natural history and management of Fanconi anemia patients with head and neck cancer: a 10-year follow-up. Laryngoscope 126, 870–879 (2016).

    Article  PubMed  Google Scholar 

  158. Hoche, F. et al. Neurodegeneration in ataxia telangiectasia: what is new? What is evident? Neuropediatrics 43, 119–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Farr, A. K. et al. Ocular manifestations of ataxia-telangiectasia. Am J. Ophthalmol. 134, 891–896 (2002).

    Article  PubMed  Google Scholar 

  160. Rothblum-Oviatt, C. et al. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11, 159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. McGrath-Morrow, S. A. et al. Evaluation and management of pulmonary disease in ataxia-telangiectasia. Pediatr. Pulmonol. 45, 847–859 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chiam, L. Y. et al. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: reflection of inappropriate immune regulation? Dermatology 223, 13–19 (2011).

    Google Scholar 

  163. Shoimer, I., Wright, N. & Haber, R. M. Noninfectious granulomas: a sign of an underlying immunodeficiency? J. Cutan. Med. Surg. 20, 259–262 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Bodemer, C. et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. Clin Microbiol. Infect. 20, O656–O663 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Neven, B. et al. Cutaneous and visceral chronic granulomatous disease triggered by a rubella virus vaccine strain in children with primary immunodeficiencies. Clin. Infect. Dis. 64, 83–86 (2017).

    Article  PubMed  Google Scholar 

  166. Perelygina, L. et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 138, 1436–1439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mitra, A., Gooi, J., Darling, J. & Newton-Bishop, J. A. Infliximab in the treatment of a child with cutaneous granulomas associated with ataxia telangiectasia. J. Am. Acad. Dermatol. 65, 676–677 (2011).

    Article  PubMed  Google Scholar 

  168. Pinzon-Charry, A., Kimble, R. M. & Peake, J. E. Intralesional steroids for the treatment of cutaneous granulomas in ataxia telangiectasia [abstract CGR012]. Intern Med. J. 43 (Suppl. 4), 25 (2013).

    Google Scholar 

  169. Privette, E. D., Ram, G., Treat, J. R., Yan, A. C. & Heimall, J. R. Healing of granulomatous skin changes in ataxia-telangiectasia after treatment with intravenous immunoglobulin and topical mometasone 0.1% ointment. Pediatr. Dermatol. 31, 703–707 (2014).

    Article  PubMed  Google Scholar 

  170. Ross, L. J. et al. Nutritional status of patients with ataxia-telangiectasia: a case for early and ongoing nutrition support and intervention. J. Paediatr. Child Health 51, 802–807 (2015).

    Article  PubMed  Google Scholar 

  171. Pommerening, H. et al. Body composition, muscle strength and hormonal status in patients with ataxia telangiectasia: a cohort study. Orphanet J. Rare Dis. 10, 155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Stewart, E. et al. Growth and nutrition in children with ataxia telangiectasia. Arch. Dis. Child. 101, 1137–1141 (2016).

    Article  PubMed  Google Scholar 

  173. Krauthammer, A. et al. Long-term nutritional and gastrointestinal aspects in patients with ataxia telangiectasia. Nutrition 46, 48–52 (2018).

    Article  PubMed  Google Scholar 

  174. Lefton-Greif, M. A., Crawford, T. O., McGrath-Morrow, S., Carson, K. A. & Lederman, H. M. Safety and caregiver satisfaction with gastrostomy in patients with ataxia telangiectasia. Orphanet J. Rare Dis. 6, 23 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lavin, M. F., Gueven, N., Bottle, S. & Gatti, R. A. Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br. Med. Bull. 81-82, 129–147 (2007).

    Article  PubMed  CAS  Google Scholar 

  176. Sandlund, J. T., Hudson, M. M., Kennedy, W., Onciu, M. & Kastan, M. B. Pilot study of modified LMB-based therapy for children with ataxia-telangiectasia and advanced stage high grade mature B-cell malignancies. Pediatr. Blood Cancer 61, 360–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Beier, R. et al. Allogeneic-matched sibling stem cell transplantation in a 13-year-old boy with ataxia telangiectasia and EBV-positive non-Hodgkin lymphoma. Bone Marrow Transplant. 51, 1271–1274 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Ussowicz, M., Musial, J., Duszenko, E., Haus, O. & Kalwak, K. Long-term survival after allogeneic-matched sibling PBSC transplantation with conditioning consisting of low-dose busilvex and fludarabine in a 3-year-old boy with ataxia-telangiectasia syndrome and ALL. Bone Marrow Transplant. 48, 740–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Slack, J. et al. Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. J. Allergy Clin. Immunol. 141, 322–328.e10 (2018). This paper reports the outcomes in 26 patients with NBS who underwent bone marrow transplantation.

    Article  CAS  PubMed  Google Scholar 

  180. Wozniak, M., Krzywon, M., Holda, M. K. & Gozdzik, J. Reduced-intensity conditioning umbilical cord blood transplantation in Nijmegen breakage syndrome. Pediatr. Transplant. 19, E51–E55 (2015).

    Article  PubMed  Google Scholar 

  181. Dembowska-Baginska, B. et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen breakage syndrome (NBS). Pediatr. Blood Cancer 52, 186–190 (2009).

    Article  PubMed  Google Scholar 

  182. Seidemann, K. et al. Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann. Oncol. 11, 141–145 (2000).

    Article  PubMed  Google Scholar 

  183. Bienemann, K. et al. Promising therapy results for lymphoid malignancies in children with chromosomal breakage syndromes (ataxia teleangiectasia or Nijmegen-breakage syndrome): a retrospective survey. Br. J. Haematol. 155, 468–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Villani, A. et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 17, 1295–1305 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Brock, P. R., de Zegher, F., Casteels-Van Daele, M. & Vanderschueren-Lodeweyckx, M. Malignant disease in Bloom’s syndrome children treated with growth hormone. Lancet 337, 1345–1346 (1991).

    Article  CAS  PubMed  Google Scholar 

  186. Ben Salah, G. et al. A novel frameshift mutation in BLM gene associated with high sister chromatid exchanges (SCE) in heterozygous family members. Mol. Biol. Rep. 41, 7373–7380 (2014).

    Article  PubMed  CAS  Google Scholar 

  187. Zierhut, H. A. & Bartels, D. M. Waiting for the next shoe to drop: the experience of parents of children with Fanconi anemia. J. Genet. Counsel. 21, 45–58 (2012).

    Article  Google Scholar 

  188. The Bloom’s Syndrome Association. www.bloomsyndromeassociation.org (2019).

  189. Ayas, M. et al. Allogeneic hematopoietic cell transplantation for Fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia. J. Clin. Oncol. 31, 1669–1676 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Rio, P., Navarro, S. & Bueren, J. A. Advances in gene therapy for fanconi anemia. Hum. Gene Ther. 29, 1114–1123 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Zhang, H. et al. TGF-beta inhibition rescues hematopoietic stem cell defects and bone marrow failure in Fanconi anemia. Cell Stem Cell 18, 668–681 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, Q. S. et al. Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 128, 2774–2784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Global A-T Family Data Platform [online], www.atfamilies.org.

  194. A-T International Registry. www.atregistry.eu.

  195. Beraldi, R. et al. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum. Mol. Genet. 24, 6473–6484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Beraldi, R. et al. Genetic ataxia telangiectasia porcine model phenocopies the multisystemic features of the human disease. Biochim. Biophys. Acta 1863, 2862–2870 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  197. Chessa, L. et al. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: results of a phase 2 trial. Orphanet J. Rare Dis. 9, 5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Leuzzi, V. et al. Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia. Neurol. Neuroimmunol. Neuroinflamm. 2, e98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02770807 (2019).

  200. Zannolli, R. et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov. Disord. 27, 1312–1316 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Cirillo, E. et al. Minimum effective betamethasone dosage on the neurological phenotype in patients with ataxia-telangiectasia: a multicenter observer-blind study. Eur. J. Neurol. 25, 833–840 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Strupp, M., Zwergal, A. & Brandt, T. Episodic ataxia type 2. Neurotherapeutics 4, 267–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Shaikh, A. G. et al. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia. J. Neurol. 260, 2728–2735 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Fang, E. F. et al. NAD(+) Replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Du, L., Pollard, J. M. & Gatti, R. A. Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc. Natl Acad. Sci. USA 104, 6007–6012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lee, P. et al. SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nat. Commun. 4, 1824 (2013).

    Article  PubMed  CAS  Google Scholar 

  207. Meijers, R. W. J. et al. Circulating T cells of patients with Nijmegen breakage syndrome show signs of senescence. J. Clin. Immunol. 37, 133–142 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Salewsky, B. et al. Directed alternative splicing in Nijmegen breakage syndrome: proof of principle concerning its therapeutical application. Mol. Ther. 24, 117–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Smetsers, S. et al. Heterozygote FANCD2 mutations associated with childhood T cell ALL and testicular seminoma. Fam. Cancer 11, 661–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Berwick, M. et al. Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res. 67, 9591–9596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tischkowitz, M., Easton, D. F., Ball, J., Hodgson, S. V. & Mathew, C. G. Cancer incidence in relatives of British Fanconi anaemia patients. BMC Cancer 8, 257 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  PubMed  CAS  Google Scholar 

  214. Chandrasekharappa, S. C. et al. Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50. Cancer 123, 3943–3954 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Thompson, D. et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J. Natl Cancer Inst. 97, 813–822 (2005).

    Article  CAS  PubMed  Google Scholar 

  216. Goldgar, D. E. et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 13, R73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Southey, M. C. et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J. Med. Genet. 53, 800–811 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Helgason, H. et al. Loss-of-function variants in ATM confer risk of gastric cancer. Nat. Genet. 47, 906–910 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Roberts, N. J. et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2, 41–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  222. Seemanova, E. et al. Cancer risk of heterozygotes with the NBN founder mutation. J. Natl Cancer Inst. 99, 1875–1880 (2007).

    Article  CAS  PubMed  Google Scholar 

  223. Bogdanova, N. et al. Nijmegen breakage syndrome mutations and risk of breast cancer. Int. J. Cancer 122, 802–806 (2008).

    Article  CAS  PubMed  Google Scholar 

  224. Cybulski, C. et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res. 64, 1215–1219 (2004).

    Article  CAS  PubMed  Google Scholar 

  225. Ciara, E. et al. Heterozygous germ-line mutations in the NBN gene predispose to medulloblastoma in pediatric patients. Acta Neuropathol. 119, 325–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Damiola, F. et al. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res. 16, R58 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Gruber, S. B. et al. BLM heterozygosity and the risk of colorectal cancer. Science 297, 2013 (2002).

    Article  CAS  PubMed  Google Scholar 

  228. Bohm, S. & Bernstein, K. A. The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair 22, 123–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  229. Ellis, N. A. et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  230. Karow, J. K., Chakraverty, R. K. & Hickson, I. D. The Bloom’s syndrome gene product is a 3′-5′ DNA helicase. J. Biol. Chem. 272, 30611–30614 (1997).

    Article  CAS  PubMed  Google Scholar 

  231. Felix, E., Gimenes, A. C. & Costa-Carvalho, B. T. Effects of inspiratory muscle training on lung volumes, respiratory muscle strength, and quality of life in patients with ataxia telangiectasia. Pediatr. Pulmonol. 49, 238–244 (2014).

    Article  PubMed  Google Scholar 

  232. Bhatt, J. M. et al. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia. Eur. Respir. Rev. 24, 565–581 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Fanconi anaemia studies in the laboratory of A.S. are supported by RO1HL120922 and R01CA204127. A.S. is a Howard Hughes Medical Institute faculty scholar.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.M.R.T.); epidemiology (A.M.R.T., N.A.E., I.D.H., S.M., C.R.-O. and C.W.); mechanisms/pathophysiology (N.A.E., I.D.H., A.S. and G.S.S.); diagnosis, screening and prevention (T.O.C., N.A.E., I.D.H., S.M., B.P., C.R.-O. and C.W.); management (T.O.C., N.A.E., I.D.H., S.M., B.P., C.R.-O. and C.W.); quality of life (T.O.C., N.A.E., I.D.H., S.M., B.P., C.R.-O. and C.W.); outlook (T.O.C., N.A.E., I.D.H., S.M., B.P., C.R.-O. and C.W.); overview of the Primer (A.M.R.T.).

Corresponding author

Correspondence to A. Malcolm R. Taylor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent (by their guardians) for publication of the images in Figure 5.

Peer review information

Nature Reviews Disease Primers thanks P. Andreassen, A. Di Masi, M. Grompe, M. Lavi, S. Sharma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, A.M.R., Rothblum-Oviatt, C., Ellis, N.A. et al. Chromosome instability syndromes. Nat Rev Dis Primers 5, 64 (2019). https://doi.org/10.1038/s41572-019-0113-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0113-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer