Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early-life adversity and neurological disease: age-old questions and novel answers

Abstract

Neurological illnesses, including cognitive impairment, memory decline and dementia, affect over 50 million people worldwide, imposing a substantial burden on individuals and society. These disorders arise from a combination of genetic, environmental and experiential factors, with the latter two factors having the greatest impact during sensitive periods in development. In this Review, we focus on the contribution of adverse early-life experiences to aberrant brain maturation, which might underlie vulnerability to cognitive brain disorders. Specifically, we draw on recent robust discoveries from diverse disciplines, encompassing human studies and experimental models. These discoveries suggest that early-life adversity, especially in the perinatal period, influences the maturation of brain circuits involved in cognition. Importantly, new findings suggest that fragmented and unpredictable environmental and parental signals comprise a novel potent type of adversity, which contributes to subsequent vulnerabilities to cognitive illnesses via mechanisms involving disordered maturation of brain ‘wiring’.

Key points

  • A strong association exists between neurocognitive disorders and early-life adversity, and experimental animal models support a causal relationship, in addition to the critical effects of genetics and gene–environment interactions.

  • The emotional aspects of adversity, including unpredictability of environmental and parental signals, most profoundly influence cognitive outcomes.

  • Mechanistically, early-life adversity might disrupt the normal maturation of the brain circuits that underlie cognitive functions by modulating synaptic maturation and pruning.

  • Novel cross-species imaging and epigenomic technologies hold promise for identifying mechanisms, biomarkers and mechanism-based preventive approaches and interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Do aberrant patterns of environmental signals to the developing brain constitute early-life adversity?
Fig. 2: Connectomic analysis reveals sex-specific development and maturation of brain circuits.

Similar content being viewed by others

References

  1. Prince, M. et al. World Alzheimer Report 2015. The global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International https://www.alz.co.uk/research/world-report-2015 (2015).

  2. Prince, M., Guerchet, M. & Prina, M. Policy Brief: the global impact of dementia 2013–2050. Alzheimer’s Disease International https://www.alz.co.uk/research/G8-policy-brief (2013).

  3. Stern, Y. et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2018.07.219 (2018).

    Google Scholar 

  4. Revelas, M. et al. Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity. Mech. Ageing Dev. 175, 24–34 (2018).

    CAS  PubMed  Google Scholar 

  5. Freudenberg-Hua, Y., Li, W. & Davies, P. The role of genetics in advancing precision medicine for Alzheimer’s disease — a narrative review. Front. Med. 5, 108 (2018).

    Google Scholar 

  6. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 301, 386–389 (2003).

    CAS  PubMed  Google Scholar 

  7. Klengel, T. & Binder, E. B. Epigenetics of stress-related psychiatric disorders and gene×environment interactions. Neuron 86, 1343–1357 (2015).

    CAS  PubMed  Google Scholar 

  8. Brown, A. S., Susser, E. S., Lin, S. P., Neugebauer, R. & Gorman, J. M. Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch hunger winter of 1944–45. Br. J. Psychiatry 166, 601–606 (1995).

    CAS  PubMed  Google Scholar 

  9. Eriksson, M., Räikkönen, K. & Eriksson, J. G. Early life stress and later health outcomes–findings from the Helsinki Birth Cohort Study. Am. J. Hum. Biol. 26, 111–116 (2014).

    PubMed  Google Scholar 

  10. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    CAS  PubMed  Google Scholar 

  11. Chen, Y. & Baram, T. Z. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology 41, 197–206 (2016).

    PubMed  Google Scholar 

  12. Novick, A. M. et al. The effects of early life stress on reward processing. J. Psychiatr. Res. 101, 80–103 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Raymond, C., Marin, M.-F., Majeur, D. & Lupien, S. Early child adversity and psychopathology in adulthood: HPA axis and cognitive dysregulations as potential mechanisms. Prog. Neuropsychopharmacol. Biol. Psychiatry 85, 152–160 (2018).

    CAS  PubMed  Google Scholar 

  14. Millan, M. J. et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 11, 141–168 (2012).

    CAS  PubMed  Google Scholar 

  15. Osler, M., Avlund, K. & Mortensen, E. L. Socio-economic position early in life, cognitive development and cognitive change from young adulthood to middle age. Eur. J. Public Health 23, 974–980 (2013).

  16. Sheridan, M. A. & McLaughlin, K. A. Dimensions of early experience and neural development: deprivation and threat. Trends Cogn. Sci. 18, 580–585 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Kaplan, G. A. et al. Childhood socioeconomic position and cognitive function in adulthood. Int. J. Epidemiol. 30, 256–263 (2001).

    CAS  PubMed  Google Scholar 

  18. Melrose, R. J. et al. Early life development in a multiethnic sample and the relation to late life cognition. J. Gerontol. B Psychol. Sci. Soc. Sci. 70, 519–531 (2015).

    PubMed  Google Scholar 

  19. Marden, J. R., Tchetgen Tchetgen, E. J., Kawachi, I. & Glymour, M. M. Contribution of socioeconomic status at 3 life-course periods to late-life memory function and decline: early and late predictors of dementia risk. Am. J. Epidemiol. 186, 805–814 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Elbejjani, M. et al. Life-course socioeconomic position and hippocampal atrophy in a prospective cohort of older adults. Psychosom. Med. 79, 14–23 (2017).

    PubMed  Google Scholar 

  21. Staff, R. T., Hogan, M. J. & Whalley, L. J. The influence of childhood intelligence, social class, education and social mobility on memory and memory decline in late life. Age Ageing 47, 847–852 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mosing, M. A., Lundholm, C., Cnattingius, S., Gatz, M. & Pedersen, N. L. Associations between birth characteristics and age-related cognitive impairment and dementia: a registry-based cohort study. PLOS Med. 15, e1002609 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Fors, S., Lennartsson, C. & Lundberg, O. Childhood living conditions, socioeconomic position in adulthood, and cognition in later life: exploring the associations. J. Gerontol. B Psychol. Sci. Soc. Sci. 64B, 750–757 (2009).

    Google Scholar 

  24. Everson-Rose, S. A., Mendes De Leon, C. F., Bienias, J. L., Wilson, R. S. & Evans, D. A. Early life conditions and cognitive functioning in later life. Am. J. Epidemiol. 158, 1083–1089 (2003).

    PubMed  Google Scholar 

  25. Pollak, S. D. et al. Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Dev. 81, 224–236 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Cohen, N. J., Lojkasek, M., Zadeh, Z. Y., Pugliese, M. & Kiefer, H. Children adopted from China: a prospective study of their growth and development. J. Child Psychol. Psychiatry 49, 458–468 (2008).

    PubMed  Google Scholar 

  27. Johnson, D. E. et al. Growth and associations between auxology, caregiving environment, and cognition in socially deprived Romanian children randomized to foster vs ongoing institutional care. Arch. Pediatr. Adolesc. Med. 164, 507–516 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Loman, M. M., Wiik, K. L., Frenn, K. A., Pollak, S. D. & Gunnar, M. R. Postinstitutionalized children’s development: growth, cognitive, and language outcomes. J. Dev. Behav. Pediatr. 30, 426–434 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Nelson, C. A. et al. Cognitive recovery in socially deprived young children: the Bucharest Early Intervention Project. Science 318, 1937–1940 (2007).

    CAS  PubMed  Google Scholar 

  30. van den Dries, L., Juffer, F., van Ijzendoorn, M. H. & Bakermans-Kranenburg, M. J. Infantsʼ physical and cognitive development after international adoption from foster care or institutions in China. J. Dev. Behav. Pediatr. 31, 144–150 (2010).

    PubMed  Google Scholar 

  31. Pechtel, P. & Pizzagalli, D. A. Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology 214, 55–70 (2011).

    CAS  PubMed  Google Scholar 

  32. Loman, M. M. et al. The effect of early deprivation on executive attention in middle childhood. J. Child Psychol. Psychiatry 54, 37–45 (2013).

    PubMed  Google Scholar 

  33. McDermott, J. M., Westerlund, A., Zeanah, C. H., Nelson, C. A. & Fox, N. A. Early adversity and neural correlates of executive function: implications for academic adjustment. Dev. Cogn. Neurosci. 2, S59–S66 (2012).

    PubMed  Google Scholar 

  34. Wiik, K. L. et al. Behavioral and emotional symptoms of post-institutionalized children in middle childhood. J. Child Psychol. Psychiatry 52, 56–63 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Lawler, J. & Gunnar, M. R. in Handbook of Early Child Education (ed. Pianta, R. C.) 457–479 (Guilford Press, 2012).

  36. Huot, R. L., Plotsky, P. M., Lenox, R. H. & McNamara, R. K. Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Res. 950, 52–63 (2002).

    CAS  PubMed  Google Scholar 

  37. Molet, J. et al. Fragmentation and high entropy of neonatal experience predict adolescent emotional outcome. Transl Psychiatry 6, e702 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohl, C. et al. Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice. Psychoneuroendocrinology 55, 128–143 (2015).

    CAS  PubMed  Google Scholar 

  39. Sánchez, M. M., Hearn, E. F., Do, D., Rilling, J. K. & Herndon, J. G. Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Res. 812, 38–49 (1998).

    PubMed  Google Scholar 

  40. Pryce, C. R., Dettling, A., Spengler, M., Spaete, C. & Feldon, J. Evidence for altered monoamine activity and emotional and cognitive disturbance in marmoset monkeys exposed to early life stress. Ann. NY Acad. Sci. 1032, 245–249 (2004).

    CAS  PubMed  Google Scholar 

  41. Bath, K. G. et al. Early life stress leads to developmental and sex selective effects on performance in a novel object placement task. Neurobiol. Stress 7, 57–67 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Roozendaal, B., Brunson, K. L., Holloway, B. L., McGaugh, J. L. & Baram, T. Z. Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc. Natl Acad. Sci. USA 99, 13908–13913 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kosten, T. A. et al. Memory impairments and hippocampal modifications in adult rats with neonatal isolation stress experience. Neurobiol. Learn. Mem. 88, 167–176 (2007).

    PubMed  Google Scholar 

  44. Guijarro, J. Z. et al. Effects of brief and long maternal separations on the HPA axis activity and the performance of rats on context and tone fear conditioning. Behav. Brain Res. 184, 101–108 (2007).

    CAS  PubMed  Google Scholar 

  45. Raineki, C. et al. Functional emergence of the hippocampus in context fear learning in infant rats. Hippocampus 20, 1037–1046 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Hulshof, H. J. et al. Maternal separation decreases adult hippocampal cell proliferation and impairs cognitive performance but has little effect on stress sensitivity and anxiety in adult Wistar rats. Behav. Brain Res. 216, 552–560 (2011).

    PubMed  Google Scholar 

  47. Lucassen, P. J. et al. Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci. 36, 621–631 (2013).

    CAS  PubMed  Google Scholar 

  48. Naninck, E. F. et al. Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus 25, 309–328 (2015).

    CAS  PubMed  Google Scholar 

  49. Brunson, K. L. et al. Mechanisms of late-onset cognitive decline after early-life stress. J. Neurosci. 25, 9328–9338 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Maras, P. M. & Baram, T. Z. Sculpting the hippocampus from within: stress, spines, and CRH. Trends Neurosci. 35, 315–324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Franke, K., Gaser, C., Roseboom, T. J., Schwab, M. & de Rooij, S. R. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation. Neuroimage 173, 460–471 (2018).

    PubMed  Google Scholar 

  52. de Groot, R. H. et al. Prenatal famine exposure and cognition at age 59 years. Int. J. Epidemiol. 40, 327–337 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. He, P. et al. Prenatal malnutrition and adult cognitive impairment: a natural experiment from the 1959–1961 Chinese famine. Br. J. Nutr. 120, 198–203 (2018).

    CAS  PubMed  Google Scholar 

  54. Crookston, B. T., Forste, R., McClellan, C., Georgiadis, A. & Heaton, T. B. Factors associated with cognitive achievement in late childhood and adolescence: the young lives cohort study of children in Ethiopia, India, Peru, and Vietnam. BMC Pediatr. 14, 253 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Tottenham, N. et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci. 13, 46–61 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Nelson, C. A., Bos, K., Gunnar, M. R. & Sonuga-Barke, E. J. S. V. The neurobiological toll of early human deprivation. Monogr. Soc. Res. Child Dev. 76, 127–146 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Callaghan, B. L. & Tottenham, N. The neuro-environmental loop of plasticity: a cross-species analysis of parental effects on emotion circuitry development following typical and adverse caregiving. Neuropsychopharmacology 41, 163–176 (2016).

    PubMed  Google Scholar 

  58. Duncan, G. J., Yeung, W. J., Brooks-Gunn, J. & Smith, J. R. How much does childhood poverty affect the life chances of children? Am. Sociol. Rev. 63, 406–423 (1998).

    Google Scholar 

  59. Hackman, D. A. & Farah, M. J. Socioeconomic status and the developing brain. Trends Cogn. Sci. 13, 65–73 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

    PubMed  Google Scholar 

  61. Karlsson, L. et al. Cohort profile: the Finnbrain Birth Cohort Study (FinnBrain). Int. J. Epidemiol. 47, 15–16j (2018).

    PubMed  Google Scholar 

  62. Hermus, M. A. A. et al. Differences in optimality index between planned place of birth in a birth centre and alternative planned places of birth, a nationwide prospective cohort study in The Netherlands: results of the Dutch Birth Centre Study. BMJ Open 7, e016958 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Glynn, L. M. et al. Prenatal maternal mood patterns predict child temperament and adolescent mental health. J. Affect. Disord. 228, 83–90 (2018).

    PubMed  Google Scholar 

  64. Davis, E. P. et al. Exposure to unpredictable maternal sensory signals influences cognitive development across species. Proc. Natl Acad. Sci. USA 114, 10390–10395 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Wilson, R. S. et al. Socioeconomic characteristics of the community in childhood and cognition in old age. Exp. Aging Res. 31, 393–407 (2005).

    CAS  PubMed  Google Scholar 

  67. González, H. M., Tarraf, W., Bowen, M. E., Johnson-Jennings, M. D. & Fisher, G. G. What do parents have to do with my cognitive reserve? Life course perspectives on twelve-year cognitive decline. Neuroepidemiology 41, 101–109 (2013).

    PubMed  Google Scholar 

  68. Sha, T., Yan, Y. & Cheng, W. Associations of childhood socioeconomic status with mid-life and late-life cognition in Chinese middle-aged and older population based on a 5-year period cohort study. Int. J. Geriatr. Psychiatry 33, 1335–1345 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Luo, Y. & Waite, L. J. The impact of childhood and adult SES on physical, mental, and cognitive well-being in later life. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, S93–S101 (2005).

    PubMed  Google Scholar 

  70. Turrell, G. et al. Socioeconomic position across the lifecourse and cognitive function in late middle age. J. Gerontol. B Psychol. Sci. Soc. Sci. 57, S43–S51 (2002).

    PubMed  Google Scholar 

  71. Zhang, Z., Gu, D. & Hayward, M. D. Early life influences on cognitive impairment among oldest old chinese. J. Gerontol. B Psychol. Sci. Soc. Sci. 63, S25–S33 (2008).

    PubMed  Google Scholar 

  72. Chen, Z.-Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, Z.-Y., Bath, K., McEwen, B., Hempstead, B. & Lee, F. Impact of genetic variant BDNF (Val66Met) on brain structure and function. Novartis Found. Symp. 2008, 180–188 (2008).

    Google Scholar 

  74. Labermaier, C. et al. A polymorphism in the Crhr1 gene determines stress vulnerability in male mice. Endocrinology 155, 2500–2510 (2014).

    PubMed  Google Scholar 

  75. Dedic, N. et al. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol. Psychiatry 23, 533–543 (2018).

    CAS  PubMed  Google Scholar 

  76. Danese, A. et al. The origins of cognitive deficits in victimized children: implications for neuroscientists and clinicians. Am. J. Psychiatry 174, 349–361 (2017).

    PubMed  Google Scholar 

  77. Whalley, L. J. et al. How the 1932 and 1947 mental surveys of Aberdeen schoolchildren provide a framework to explore the childhood origins of late onset disease and disability. Maturitas 69, 365–372 (2011).

    PubMed  Google Scholar 

  78. Davis, E. P. et al. Across continents and demographics, unpredictable maternal signals impact children’s neurodevelopment. EBioMedicine https://doi.org/10.1016/j.ebiom.2019.07.025 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Vegetabile, B. G., Stout-Oswald, S. A., Poggi Davis, E., Baram, T. Z. & Stern, H. S. Estimating the entropy rate of finite Markov chains with application to behavior studies. J. Educ. Behav. Stat. 44, 282–308 (2019).

    Google Scholar 

  80. Conte Center. Measuring unpredictable maternal sensory signals. UCI https://contecenter.uci.edu/measuring-unpredictable-maternal-sensory-signals/ (2019).

  81. Nelson, E. D. & Monteggia, L. M. Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission. Neurobiol. Learn. Mem. 96, 53–60 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. van Ijzendoorn, M. H., Bard, K. A., Bakermans-Kranenburg, M. J. & Ivan, K. Enhancement of attachment and cognitive development of young nursery-reared chimpanzees in responsive versus standard care. Dev. Psychobiol. 51, 173–185 (2009).

    PubMed  Google Scholar 

  83. van Bodegom, M., Homberg, J. R. & Henckens, M. J. A. G. Modulation of the hypothalamic–pituitary–adrenal axis by early life stress exposure. Front. Cell. Neurosci. 11, 87 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Molet, J., Maras, P. M., Avishai-Eliner, S. & Baram, T. Z. Naturalistic rodent models of chronic early-life stress. Dev. Psychobiol. 56, 1675–1688 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Walker, C.-D. D. et al. Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 20, 421–448 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Raineki, C., Cortés, M. R., Belnoue, L. & Sullivan, R. M. Effects of early-life abuse differ across development: infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala. J. Neurosci. 32, 7758–7765 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sevelinges, Y., Sullivan, R. M., Messaoudi, B. & Mouly, A.-M. Neonatal odor-shock conditioning alters the neural network involved in odor fear learning at adulthood. Learn. Mem. 15, 649–656 (2008).

    PubMed  PubMed Central  Google Scholar 

  88. Oomen, C. A. et al. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J. Neurosci. 30, 6635–6645 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schaaf, M. J. et al. Correlation between hippocampal BDNF mRNA expression and memory performance in senescent rats. Brain Res. 915, 227–233 (2001).

    CAS  PubMed  Google Scholar 

  90. Loi, M. et al. Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 342, 101–119 (2017).

    CAS  PubMed  Google Scholar 

  91. Ivy, A. S. et al. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J. Neurosci. 30, 13005–13015 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Molet, J. et al. MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after early-life adversity. Hippocampus 26, 1618–1632 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Wearick-Silva, L. E. et al. Running during adolescence rescues a maternal separation-induced memory impairment in female mice: potential role of differential exon-specific BDNF expression. Dev. Psychobiol. 59, 268–274 (2017).

    CAS  PubMed  Google Scholar 

  94. Arcego, D. M. et al. Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: interplay of these factors changes these effects. Int. J. Dev. Neurosci. 50, 16–25 (2016).

    CAS  PubMed  Google Scholar 

  95. de Lima, M. N. M. et al. Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated D-amphetamine exposure. Behav. Brain Res. 224, 100–106 (2011).

    PubMed  Google Scholar 

  96. Gatt, J. M. et al. Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol. Psychiatry 14, 681–695 (2009).

    CAS  PubMed  Google Scholar 

  97. Grassi-Oliveira, R., Stein, L. M., Lopes, R. P., Teixeira, A. L. & Bauer, M. E. Low plasma brain-derived neurotrophic factor and childhood physical neglect are associated with verbal memory impairment in major depression–a preliminary report. Biol. Psychiatry 64, 281–285 (2008).

    CAS  PubMed  Google Scholar 

  98. Bath, K. G., Schilit, A. & Lee, F. S. Stress effects on BDNF expression: effects of age, sex, and form of stress. Neuroscience 239, 149–156 (2013).

    CAS  PubMed  Google Scholar 

  99. Amso, D. & Scerif, G. The attentive brain: insights from developmental cognitive neuroscience. Nat. Rev. Neurosci. 16, 606–619 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Teicher, M. H., Samson, J. A., Anderson, C. M. & Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 17, 652–666 (2016).

    CAS  PubMed  Google Scholar 

  101. Casey, B. J., Heller, A. S., Gee, D. G. & Cohen, A. O. Development of the emotional brain. Neurosci. Lett. 693, 29–34 (2019).

    CAS  PubMed  Google Scholar 

  102. Chen, Y. et al. Converging, synergistic actions of multiple stress hormones mediate enduring memory impairments after acute simultaneous stresses. J. Neurosci. 36, 11295–11307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Pattwell, S. S. et al. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nat. Commun. 7, 11475 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gordon, J. Translational research: from research findings to transformative treatments. NIMH https://www.nimh.nih.gov/about/director/messages/2018/translational-research-from-research-findings-to-transformative-treatments.shtml (2018).

  106. Krugers, H. J. et al. Early life adversity: lasting consequences for emotional learning. Neurobiol. Stress 6, 14–21 (2017).

    PubMed  Google Scholar 

  107. Agidew, A. A. & Singh, K. N. Determinants of food insecurity in the rural farm households in South Wollo Zone of Ethiopia: the case of the Teleyayen sub-watershed. Agric. Food Econ. 6, 10 (2018).

    Google Scholar 

  108. Hodel, A. S. et al. Duration of early adversity and structural brain development in post-institutionalized adolescents. Neuroimage 105, 112–119 (2015).

    PubMed  Google Scholar 

  109. Bale, T. L. et al. Early life programming and neurodevelopmental disorders. Biol. Psychiatry 68, 314–319 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Sandman, C. A. et al. Cortical thinning and neuropsychiatric outcomes in children exposed to prenatal adversity: a role for placental CRH? Am. J. Psychiatry 175, 471–479 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Sandman, C. A., Davis, E. P., Buss, C. & Glynn, L. M. Prenatal programming of human neurological function. Int. J. Pept. 2011, 837596 (2011).

    PubMed  PubMed Central  Google Scholar 

  112. Gee, D. G. et al. Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychol. Sci. 25, 2067–2078 (2014).

    PubMed  Google Scholar 

  113. Bowlby, J. Research into the origins of delinquent behaviour. Br. Med. J. 1, 570–573 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hostinar, C. E. & Gunnar, M. R. The developmental effects of early life stress. Curr. Dir. Psychol. Sci. 22, 400–406 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Gunnar, M. R., Morison, S. J., Chisholm, K. & Schuder, M. Salivary cortisol levels in children adopted from Romanian orphanages. Dev. Psychopathol. 13, 611–628 (2001).

    CAS  PubMed  Google Scholar 

  116. Gunnar, M. R. Reversing the effects of early deprivation after infancy: giving children families may not be enough. Front. Neurosci. 4, 170 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Masur, E. F., Flynn, V. & Eichorst, D. L. Maternal responsive and directive behaviours and utterances as predictors of children’s lexical development. J. Child Lang. 32, 63–91 (2005).

    PubMed  Google Scholar 

  118. NICHD Early Care Research Network. Chronicity of maternal depressive symptoms, maternal sensitivity, and child functioning at 36 months. Dev. Psychol. 35, 1297–1310 (1999).

    Google Scholar 

  119. NICHD Early Care Research Network. Infant–mother attachment classification: risk and protection in relation to changing maternal caregiving quality. Dev. Psychol. 42, 38–58 (2006).

    Google Scholar 

  120. Hane, A. A., Henderson, H. A., Reeb-Sutherland, B. C. & Fox, N. A. Ordinary variations in human maternal caregiving in infancy and biobehavioral development in early childhood: a follow-up study. Dev. Psychobiol. 52, 558–567 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. Belsky, J. & Fearon, R. M. P. Early attachment security, subsequent maternal sensitivity, and later child development: does continuity in development depend upon continuity of caregiving? Attach. Hum. Dev. 4, 361–387 (2002).

    PubMed  Google Scholar 

  122. Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  123. Champagne, F. A., Francis, D. D., Mar, A. & Meaney, M. J. Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol. Behav. 79, 359–371 (2003).

    CAS  PubMed  Google Scholar 

  124. Coates, D. L. & Lewis, M. Early mother–infant interaction and infant cognitive status as predictors of school performance and cognitive behavior in six-year-olds. Child Dev. 55, 1219 (1984).

    CAS  PubMed  Google Scholar 

  125. Parker, K. J., Buckmaster, C. L., Justus, K. R., Schatzberg, A. F. & Lyons, D. M. Mild early life stress enhances prefrontal-dependent response inhibition in monkeys. Biol. Psychiatry 57, 848–855 (2005).

    PubMed  Google Scholar 

  126. Rice, C. J., Sandman, C. A., Lenjavi, M. R. & Baram, T. Z. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology 149, 4892–4900 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sánchez, M. M., Ladd, C. O. & Plotsky, P. M. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev. Psychopathol. 13, 419–449 (2001).

    PubMed  Google Scholar 

  128. Spencer-Booth, Y. & Hinde, R. A. The effects of 13 days maternal separation on infant rhesus monkeys compared with those of shorter and repeated separations. Anim. Behav. 19, 595–605 (1971).

    CAS  PubMed  Google Scholar 

  129. Fenoglio, K. A., Brunson, K. L. & Baram, T. Z. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front. Neuroendocrinol. 27, 180–192 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S. & Sapolsky, R. M. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768 (1988).

    CAS  PubMed  Google Scholar 

  131. Gilles, E. E., Schultz, L. & Baram, T. Z. Abnormal corticosterone regulation in an immature rat model of continuous chronic stress. Pediatr. Neurol. 15, 114–119 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ivy, A. S., Brunson, K. L., Sandman, C. & Baram, T. Z. Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience 154, 1132–1142 (2008).

    CAS  PubMed  Google Scholar 

  133. Wang, X.-D. et al. Forebrain CRF1 modulates early-life stress-programmed cognitive deficits. J. Neurosci. 31, 13625–13634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Herman, J. P. & Tasker, J. G. Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front. Endocrinol. 7, 137 (2016).

    Google Scholar 

  135. Redish, A. D. & Gordon, J. A. (eds) Computational Psychiatry: New Perspectives on Mental Illness (MIT Press, 2016).

  136. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Espinosa, J. S. & Stryker, M. P. Development and plasticity of the primary visual cortex. Neuron 75, 230–249 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004).

    CAS  PubMed  Google Scholar 

  139. Hensch, T. K. Critical period mechanisms in developing visual cortex. Curr. Top. Dev. Biol. 69, 215–237 (2005).

    CAS  PubMed  Google Scholar 

  140. Korosi, A. et al. Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J. Neurosci. 30, 703–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Singh-Taylor, A. et al. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience. Mol. Psychiatry 23, 648–657 (2018).

    CAS  PubMed  Google Scholar 

  142. Gunn, B. G. et al. Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J. Neurosci. 33, 19534–19554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Eichenbaum, H. The role of the hippocampus in navigation is memory. J. Neurophysiol. 117, 1785–1796 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Wixted, J. T. et al. Coding of episodic memory in the human hippocampus. Proc. Natl Acad. Sci. USA 115, 1093–1098 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Squire, L. R., Genzel, L., Wixted, J. T. & Morris, R. G. Memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021766 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. Zhang, J. et al. Mapping postnatal mouse brain development with diffusion tensor microimaging. Neuroimage 26, 1042–1051 (2005).

    PubMed  Google Scholar 

  147. Nassar, R. et al. Gestational age is dimensionally associated with structural brain network abnormalities across development. Cereb. Cortex 29, 2102–2114 (2019).

    PubMed  Google Scholar 

  148. Hodge, R. D. et al. Tbr2 expression in Cajal–Retzius cells and intermediate neuronal progenitors is required for morphogenesis of the dentate gyrus. J. Neurosci. 33, 4165–4180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Nakahira, E. & Yuasa, S. Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J. Comp. Neurol. 483, 329–340 (2005).

    PubMed  Google Scholar 

  150. Kehoe, P. & Bronzino, J. D. Neonatal stress alters LTP in freely moving male and female adult rats. Hippocampus 9, 651–658 (1999).

    CAS  PubMed  Google Scholar 

  151. Jackowski, A. et al. Early-life stress, corpus callosum development, hippocampal volumetrics, and anxious behavior in male nonhuman primates. Psychiatry Res. 192, 37–44 (2011).

    PubMed  PubMed Central  Google Scholar 

  152. Lyons, D. M. et al. Early life stress and inherited variation in monkey hippocampal volumes. Arch. Gen. Psychiatry 58, 1145–1151 (2001).

    CAS  PubMed  Google Scholar 

  153. Paus, T. in Handbook of Adolescent Psychology (eds. Lerner, M. & Steinberg, L.). 95–115 (John Wiley & Sons, 2009).

  154. Braitenberg, V. & Schüz, A. in Cortex: Statistics and Geometry of Neuronal Connectivity 93–98 (Springer, 1998).

  155. Shansky, R. M. & Woolley, C. S. Considering sex as a biological variable will be valuable for neuroscience research. J. Neurosci. 36, 11817–11822 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Eliot, L. & Richardson, S. S. Sex in context: limitations of animal studies for addressing human sex/gender neurobehavioral health disparities. J. Neurosci. 36, 11823–11830 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Valentino, R. J. & Bangasser, D. A. Sex-biased cellular signaling: molecular basis for sex differences in neuropsychiatric diseases. Dialogues Clin. Neurosci. 18, 385–393 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Regev, L. & Baram, T. Z. Corticotropin releasing factor in neuroplasticity. Front. Neuroendocrinol. 35, 171–179 (2014).

    CAS  PubMed  Google Scholar 

  159. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2017).

    PubMed  Google Scholar 

  160. Wisse, L. E. M. et al. A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals? Hippocampus 27, 3–11 (2017).

    PubMed  Google Scholar 

  161. Driessen, M. et al. Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Arch. Gen. Psychiatry 57, 1115 (2000).

    CAS  PubMed  Google Scholar 

  162. Bremner, J. D. et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse — a preliminary report. Biol. Psychiatry 41, 23–32 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G. & McClarty, B. Hippocampal volume in women victimized by childhood sexual abuse. Psychol. Med. 27, 951–959 (1997).

    CAS  PubMed  Google Scholar 

  164. Crossley, N. A. et al. Imaging social and environmental factors as modulators of brain dysfunction: time to focus on developing non-Western societies. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 8–15 (2019).

    PubMed  Google Scholar 

  165. Lenze, S. N., Xiong, C. & Sheline, Y. I. Childhood adversity predicts earlier onset of major depression but not reduced hippocampal volume. Psychiatry Res. Neuroimaging 162, 39–49 (2008).

    Google Scholar 

  166. Riem, M. M. E., Alink, L. R. A., Out, D., Van Ijzendoorn, M. H. & Bakermans-Kranenburg, M. J. Beating the brain about abuse: empirical and meta-analytic studies of the association between maltreatment and hippocampal volume across childhood and adolescence. Dev. Psychopathol. 27, 507–520 (2015).

    PubMed  Google Scholar 

  167. Kim, D.-J. et al. Childhood poverty and the organization of structural brain connectome. Neuroimage 184, 409–416 (2019).

    PubMed  Google Scholar 

  168. Buss, C., Davis, E. P., Muftuler, L. T., Head, K. & Sandman, C. A. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology 35, 141–153 (2010).

    PubMed  PubMed Central  Google Scholar 

  169. Hatfield, T. et al. 71: Magnetic resonance imaging (MRI) shows long term changes in brain structure in preterm infants exposed to chorioamnionitis. Am. J. Obstet. Gynecol. 204, S41 (2011).

    Google Scholar 

  170. Sandman, C. A., Buss, C., Head, K. & Davis, E. P. Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biol. Psychiatry 77, 324–334 (2015).

    PubMed  Google Scholar 

  171. Curran, M. M., Sandman, C. A., Poggi Davis, E., Glynn, L. M. & Baram, T. Z. Abnormal dendritic maturation of developing cortical neurons exposed to corticotropin releasing hormone (CRH): insights into effects of prenatal adversity? PLOS ONE 12, e0180311 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Feldman, H. M., Yeatman, J. D., Lee, E. S., Barde, L. H. F. & Gaman-Bean, S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J. Dev. Behav. Pediatr. 31, 346–356 (2010).

    PubMed  PubMed Central  Google Scholar 

  174. Mori, S. & Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527–539 (2006).

    CAS  PubMed  Google Scholar 

  175. Sorg, C. et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 104, 18760–18765 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tahmasian, M. et al. Based on the network degeneration hypothesis: separating individual patients with different neurodegenerative syndromes in a preliminary hybrid PET/MR study. J. Nucl. Med. 57, 410–415 (2016).

    CAS  PubMed  Google Scholar 

  178. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Pievani, M., de Haan, W., Wu, T., Seeley, W. W. & Frisoni, G. B. Functional network disruption in the degenerative dementias. Lancet Neurol. 10, 829–843 (2011).

    PubMed  PubMed Central  Google Scholar 

  180. Landfield, P. W., McGaugh, J. L. & Lynch, G. Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats. Brain Res. 150, 85–101 (1978).

    CAS  PubMed  Google Scholar 

  181. Riley, J. D. et al. Network specialization during adolescence: hippocampal effective connectivity in boys and girls. Neuroimage 175, 402–412 (2018).

    PubMed  Google Scholar 

  182. Yassa, M. A., Muftuler, L. T. & Stark, C. E. L. Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proc. Natl Acad. Sci. USA 107, 12687–12691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Leal, S. L. & Yassa, M. A. Neurocognitive aging and the hippocampus across species. Trends Neurosci. 38, 800–812 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kim, D.-J. et al. Prenatal maternal cortisol has sex-specific associations with child brain network properties. Cereb. Cortex 27, 5230–5241 (2017).

    PubMed  Google Scholar 

  185. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 865 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Lomvardas, S. & Maniatis, T. Histone and DNA modifications as regulators of neuronal development and function. Cold Spring Harb. Perspect. Biol. 8, a024208 (2016).

    PubMed  PubMed Central  Google Scholar 

  189. Zocchi, L. & Sassone-Corsi, P. Joining the dots: from chromatin remodeling to neuronal plasticity. Curr. Opin. Neurobiol. 20, 432–440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Baker-Andresen, D., Ratnu, V. S. & Bredy, T. W. Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends Neurosci. 36, 3–13 (2013).

    CAS  PubMed  Google Scholar 

  191. Sweatt, J. The epigenetic basis of individuality. Curr. Opin. Behav. Sci. 25, 51–56 (2019).

    PubMed  Google Scholar 

  192. Hwang, J.-Y., Aromolaran, K. A. & Zukin, R. S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci. 18, 347–361 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. McClelland, S., Korosi, A., Cope, J., Ivy, A. & Baram, T. Z. Emerging roles of epigenetic mechanisms in the enduring effects of early-life stress and experience on learning and memory. Neurobiol. Learn. Mem. 96, 79–88 (2011).

    PubMed  PubMed Central  Google Scholar 

  194. Bale, T. L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 16, 332–344 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lipovich, L. et al. Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 192, 1133–1148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Szyf, M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur. Neuropsychopharmacol. 25, 682–702 (2015).

    CAS  PubMed  Google Scholar 

  197. Turecki, G. The molecular bases of the suicidal brain. Nat. Rev. Neurosci. 15, 802–816 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Provencal, N. et al. The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J. Neurosci. 32, 15626–15642 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Provençal, N. & Binder, E. B. The effects of early life stress on the epigenome: from the womb to adulthood and even before. Exp. Neurol. 268, 10–20 (2015).

    PubMed  Google Scholar 

  200. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  201. Maze, I. et al. Analytical tools and current challenges in the modern era of neuroepigenomics. Nat. Neurosci. 17, 1476–1490 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Peixoto, L. et al. How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Res. 43, 7664–7674 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Verbitsky, M. et al. Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn. Mem. 11, 253–260 (2004).

    PubMed  PubMed Central  Google Scholar 

  204. Gray, J. D. et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol. Psychiatry 23, 904–913 (2018).

    CAS  PubMed  Google Scholar 

  205. Ahmadiyeh, N., Slone-Wilcoxon, J. L., Takahashi, J. S. & Redei, E. E. Maternal behavior modulates X-linked inheritance of behavioral coping in the defensive burying test. Biol. Psychiatry 55, 1069–1074 (2004).

    PubMed  PubMed Central  Google Scholar 

  206. Peña, C. J. et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science 356, 1185–1188 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Patterson, K. P. et al. Enduring memory impairments provoked by developmental febrile seizures are mediated by functional and structural effects of neuronal restrictive silencing factor. J. Neurosci. 37, 3799–3812 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Schulmann, A. et al. Blocking NRSF function rescues spatial memory impaired by early-life adversity and reveals unexpected underlying transcriptional programs. SSRN Electron. J. https://doi.org/10.2139/ssrn.3284454 (2018).

    Article  Google Scholar 

  209. Gray, J. D., Kogan, J. F., Marrocco, J. & McEwen, B. S. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat. Rev. Endocrinol. 13, 661–673 (2017).

    CAS  PubMed  Google Scholar 

  210. Wang, X. D. et al. Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nat. Neurosci. 16, 706–713 (2013).

    CAS  PubMed  Google Scholar 

  211. Roth, T. L., Lubin, F. D., Funk, A. J. & Sweatt, J. D. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 65, 760–769 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Klengel, T. et al. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci. 16, 33–41 (2013).

    CAS  PubMed  Google Scholar 

  213. Meaney, M. J. et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev. Neurosci. 18, 49–72 (1996).

    CAS  PubMed  Google Scholar 

  214. Uchida, S. et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J. Neurosci. 30, 15007–15018 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Bhansali, P., Dunning, J., Singer, S. E., David, L. & Schmauss, C. Early life stress alters adult serotonin 2c receptor pre-mRNA editing and expression of the subunit of the heterotrimeric G-protein Gq. J. Neurosci. 27, 1467–1473 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Xu, Z. & Taylor, J. A. Genome-wide age-related DNA methylation changes in blood and other tissues relate to histone modification, expression and cancer. Carcinogenesis 35, 356–364 (2014).

    CAS  PubMed  Google Scholar 

  217. Alisch, R. S. et al. Age-associated DNA methylation in pediatric populations. Genome Res. 22, 623–632 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Florath, I., Butterbach, K., Müller, H., Bewerunge-Hudler, M. & Brenner, H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum. Mol. Genet. 23, 1186–1201 (2014).

    CAS  PubMed  Google Scholar 

  219. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    PubMed  PubMed Central  Google Scholar 

  220. Smith, A. K. et al. DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168, 36–44 (2015).

    CAS  Google Scholar 

  221. Tylee, D. S., Kawaguchi, D. M. & Glatt, S. J. On the outside, looking in: a review and evaluation of the comparability of blood and brain “-omes”. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162, 595–603 (2013).

    CAS  Google Scholar 

  222. Degerman, S. et al. Maintained memory in aging is associated with young epigenetic age. Neurobiol. Aging 55, 167–171 (2017).

    PubMed  Google Scholar 

  223. Marioni, R. E. et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int. J. Epidemiol. 44, 1388–1396 (2015).

    PubMed  PubMed Central  Google Scholar 

  224. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    PubMed  PubMed Central  Google Scholar 

  225. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS  PubMed  Google Scholar 

  226. Nemoda, Z. et al. Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi. Transl. Psychiatry 5, e545 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Peter, C. J. et al. DNA methylation signatures of early childhood malnutrition associated with impairments in attention and cognition. Biol. Psychiatry 80, 765–774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Eipel, M. et al. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging 8, 1034–1048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Schwaiger, M. et al. Altered stress-induced regulation of genes in monocytes in adults with a history of childhood adversity. Neuropsychopharmacology 41, 2530–2540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Urdinguio, R. G. et al. Longitudinal study of DNA methylation during the first 5 years of life. J. Transl. Med. 14, 160 (2016).

    PubMed  PubMed Central  Google Scholar 

  231. Jiang, S. et al. Intra-individual methylomics detects the impact of early-life adversity. Life Sci. Alliance 2, e201800204 (2019).

    PubMed  PubMed Central  Google Scholar 

  232. Child and Adolescent Health Measurement Initiative. 2011–2012 national survey of children’s health (CAHMI, 2013).

  233. Hoynes, H., Schanzenbach, D. W. & Almond, D. Long-run impacts of childhood access to the safety net. Am. Econ. Rev. 106, 903–934 (2016).

    Google Scholar 

  234. Shaefer, H. L. et al. A universal child allowance: a plan to reduce poverty and income instability among children in the United States. RSF 4, 22–42 (2018).

    Google Scholar 

  235. Josselyn, S. A. & Frankland, P. W. Infantile amnesia: a neurogenic hypothesis. Learn. Mem. 19, 423–433 (2012).

    CAS  PubMed  Google Scholar 

  236. Collie, R. & Hayne, H. Deferred imitation by 6- and 9-month-old infants: more evidence for declarative memory. Dev. Psychobiol. 35, 83–90 (1999).

    CAS  PubMed  Google Scholar 

  237. Hayne, H. & Herbert, J. Verbal cues facilitate memory retrieval during infancy. J. Exp. Child Psychol. 89, 127–139 (2004).

    PubMed  Google Scholar 

  238. Evans, G. W. & Fuller-Rowell, T. E. Childhood poverty, chronic stress, and young adult working memory: the protective role of self-regulatory capacity. Dev. Sci. 16, 688–696 (2013).

    PubMed  Google Scholar 

  239. Kavanaugh, B. C., Dupont-Frechette, J. A., Jerskey, B. A. & Holler, K. A. Neurocognitive deficits in children and adolescents following maltreatment: neurodevelopmental consequences and neuropsychological implications of traumatic stress. Appl. Neuropsychol. Child 6, 64–78 (2016).

    PubMed  Google Scholar 

  240. Tan, H. M., Wills, T. J. & Cacucci, F. The development of spatial and memory circuits in the rat. Wiley Interdiscip. Rev. Cogn. Sci. 8, e1424 (2016).

    Google Scholar 

  241. Alberini, C. M. & Travaglia, A. Infantile amnesia: a critical period of learning to learn and remember. J. Neurosci. 37, 5783–5795 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Avishai-Eliner, S. Stressed-out, or in (utero)? Trends Neurosci. 25, 518–524 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Short, A. K., Maras, P. M., Pham, A. L., Ivy, A. S. & Baram, T. Z. Short-term block of CRH receptor in adults mitigates age-related memory impairments provoked by early-life adversity. bioRxiv https://doi.org/10.1101/714451 (2019).

  244. Werker, J. F. & Hensch, T. K. Critical periods in speech perception: new directions. Annu. Rev. Psychol. 66, 173–196 (2015).

    PubMed  Google Scholar 

  245. Sun, H. et al. Early seizures prematurely unsilence auditory synapses to disrupt thalamocortical critical period plasticity. Cell Rep. 23, 2533–2540 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Takesian, A. E., Bogart, L. J., Lichtman, J. W. & Hensch, T. K. Inhibitory circuit gating of auditory critical-period plasticity. Nat. Neurosci. 21, 218–227 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Trachtenberg, J. T. & Stryker, M. P. Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J. Neurosci. 21, 3476–3482 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Amaral, D. G. & Dent, J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).

    CAS  PubMed  Google Scholar 

  249. Henze, D., Urban, N. & Barrionuevo, G. The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98, 407–427 (2000).

    CAS  PubMed  Google Scholar 

  250. Cotman, C. W., Berchtold, N. C. & Christie, L.-A. A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    CAS  PubMed  Google Scholar 

  251. Nichol, K. E., Parachikova, A. I. & Cotman, C. W. Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav. Brain Res. 184, 124–132 (2007).

    PubMed  PubMed Central  Google Scholar 

  252. Nichol, K., Deeny, S. P., Seif, J., Camaclang, K. & Cotman, C. W. Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement. 5, 287–294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Segal, S. K., Cotman, C. W. & Cahill, L. F. Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. J. Alzheimers Dis. 32, 1011–1018 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Guitar, N. A., Connelly, D. M., Nagamatsu, L. S., Orange, J. B. & Muir-Hunter, S. W. The effects of physical exercise on executive function in community-dwelling older adults living with Alzheimer’s-type dementia: a systematic review. Ageing Res. Rev. 47, 159–167 (2018).

    PubMed  Google Scholar 

  255. Roberts, C. E., Phillips, L. H., Cooper, C. L., Gray, S. & Allan, J. L. Effect of different types of physical activity on activities of daily living in older adults: systematic review and meta-analysis. J. Aging Phys. Act. 25, 653–670 (2017).

    PubMed  Google Scholar 

  256. Snigdha, S., de Rivera, C., Milgram, N. W. & Cotman, C. W. Exercise enhances memory consolidation in the aging brain. Front. Aging Neurosci. 6, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  257. Baram, T. Z. & Bolton, J. L. Parental smartphone use and children’s mental outcomes: a neuroscience perspective. Neuropsychopharmacology 44, 239–240 (2019).

    PubMed  Google Scholar 

  258. Galimberti, I., Bednarek, E., Donato, F. & Caroni, P. EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron 65, 627–642 (2010).

    CAS  PubMed  Google Scholar 

  259. Donato, F., Jacobsen, R. I., Moser, M.-B. & Moser, E. I. Stellate cells drive maturation of the entorhinal-hippocampal circuit. Science 355, eaai8178 (2017).

    PubMed  Google Scholar 

  260. Hong, S., Dissing-Olesen, L. & Stevens, B. New insights on the role of microglia in synaptic pruning in health and disease. Curr. Opin. Neurobiol. 36, 128–134 (2016).

    CAS  PubMed  Google Scholar 

  261. Baram, T. Z., Donato, F. & Holmes, G. L. Construction and disruption of spatial memory networks during development. Learn. Mem. 26, 206–218 (2019).

    PubMed  PubMed Central  Google Scholar 

  262. Glynn, L. M. & Baram, T. Z. The influence of unpredictable, fragmented parental signals on the developing brain. Front. Neuroendocrinol. 53, 100736 (2019).

    PubMed  PubMed Central  Google Scholar 

  263. Stanton, M. E. & Levine, S. Inhibition of infant glucocorticoid stress response: specific role of maternal cues. Dev. Psychobiol. 23, 411–426 (1990).

    CAS  PubMed  Google Scholar 

  264. Suchecki, D., Nelson, D. Y., Oers, H. Van & Levine, S. Activation and inhibition of the hypothalamic–pituitary–adrenal axis of the neonatal rat: effects of maternal deprivation. Psychoneuroendocrinology 20, 169–182 (1995).

    CAS  PubMed  Google Scholar 

  265. Schmidt, M. V. et al. The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. Int. J. Dev. Neurosci. 21, 125–132 (2003).

    CAS  PubMed  Google Scholar 

  266. Yi, S. J. & Baram, T. Z. Corticotropin-releasing hormone mediates the response to cold stress in the neonatal rat without compensatory enhancement of the peptide’s gene expression. Endocrinology 135, 2364–2368 (1994).

    CAS  PubMed  Google Scholar 

  267. Dent, G. W., Smith, M. A. & Levine, S. Rapid induction of corticotropin-releasing hormone gene transcription in the paraventricular nucleus of the developing rat. Endocrinology 141, 1593–1598 (2000).

    CAS  PubMed  Google Scholar 

  268. Bohacek, J. & Mansuy, I. M. in Epigenetics and Neuroendocrinology (eds. Spengler, D. & Binder, E.) 79–119 (Springer, 2016).

  269. Herringa, R. Commentary: Paediatric post-traumatic stress disorder from a neurodevelopmental network perspective: reflections on Weems et al. (2019). J. Child Psychol. Psychiatry 60, 409–411 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work has been supported by NIH grants NS28912, NS35439, NS108296, MH73136 and MH096889, and by the Hewitt Foundation for Biomedical Research.

Reviewer information

Nature Reviews Neurology thanks R. Herringa and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Tallie Z. Baram.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Short, A.K., Baram, T.Z. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 15, 657–669 (2019). https://doi.org/10.1038/s41582-019-0246-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0246-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing