Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transposable elements in human genetic disease

Abstract

Transposable elements are abundant in the human genome, and great strides have been made in pinpointing variations in these repetitive sequences using whole-genome sequencing. Now, the focus is shifting to understanding their expression and regulation, and the functional consequences of their insertion and retention in the genome over time. Whereas transposable element insertions have been known to cause human genetic disease since the 1980s, the scope of their contributions to heritable phenotypes is now starting to be uncovered. Here, we review the many ways human retrotransposons contribute to genome function, their dysregulation in diseases including cancer and how they affect genetic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transposable elements.
Fig. 2: Long interspersed element 1 expression.
Fig. 3: Mechanisms by which disease-causing transposable element insertions disrupt normal gene function.
Fig. 4: Transposable elements can cause disease by introducing regulatory sequences or through large regional effects.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  2. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. Institute for Systems Biology http://www.repeatmasker.org (2013–2015).

  3. Boissinot, S., Davis, J., Entezam, A., Petrov, D. & Furano, A. V. Fitness cost of LINE-1 (L1) activity in humans. Proc. Natl Acad. Sci. USA 103, 9590–9594 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rishishwar, L. et al. Evidence for positive selection on recent human transposable element insertions. Gene 675, 69–79 (2018).

    CAS  PubMed  Google Scholar 

  5. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    CAS  PubMed  Google Scholar 

  6. Lowe, C. B. & Haussler, D. 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLOS ONE 7, e43128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013).

    CAS  PubMed  Google Scholar 

  8. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016). This recent report demonstrates a ‘plug-and-play’ model whereby TEs provide co-opted regulatory sequences that wire a gene network.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuentes, D. R., Swigut, T. & Wysocka, J. Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. eLife 7, e35989 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Attig, J. et al. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution. eLife 5, e19545 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Aktas, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119 (2017).

    CAS  PubMed  Google Scholar 

  12. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013). This study describes the identification of the mechanism that suppresses Alu exonization.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bailey, J. A., Liu, G. & Eichler, E. E. An Alu transposition model for the origin and expansion of human segmental duplications. Am. J. Hum. Genet. 73, 823–834 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ewing, A. D. & Kazazian, H. H. Jr. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20, 1262–1270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, C. R. et al. Mobile interspersed repeats are major structural variants in the human genome. Cell 141, 1171–1182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Iskow, R. C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253–1261 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Witherspoon, D. J. et al. Mobile element scanning (ME-Scan) by targeted high-throughput sequencing. BMC Genomics 11, 410 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Stewart, C. et al. A comprehensive map of mobile element insertion polymorphisms in humans. PLOS Genet. 7, e1002236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015). This study reports the mapping of TEs in whole-genome data and provides the best current catalogue of structural variants resulting from mobile element activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaisson, M. J. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    CAS  PubMed  Google Scholar 

  21. Konkel, M. K., Walker, J. A. & Batzer, M. A. LINEs and SINEs of primate evolution. Evol. Anthropol. 19, 236–249 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin, S. L. et al. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J. Mol. Biol. 348, 549–561 (2005).

    CAS  PubMed  Google Scholar 

  25. Khazina, E. et al. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat. Struct. Mol. Biol. 18, 1006–1014 (2011).

    CAS  PubMed  Google Scholar 

  26. Feng, Q., Moran, J. V., Kazazian, H. H. Jr. & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    CAS  PubMed  Google Scholar 

  27. Weichenrieder, O., Repanas, K. & Perrakis, A. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 12, 975–986 (2004).

    CAS  PubMed  Google Scholar 

  28. Mathias, S. L., Scott, A. F., Kazazian, H. H. Jr., Boeke, J. D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    CAS  PubMed  Google Scholar 

  29. Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    CAS  PubMed  Google Scholar 

  30. Ostertag, E. M. & Kazazian, H. H. Jr. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res. 11, 2059–2065 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kulpa, D. A. & Moran, J. V. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 13, 655–660 (2006).

    CAS  PubMed  Google Scholar 

  32. Ullu, E. & Tschudi, C. Alu sequences are processed 7SL RNA genes. Nature 312, 171–172 (1984).

    CAS  PubMed  Google Scholar 

  33. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48 (2003).

    CAS  PubMed  Google Scholar 

  34. Ahl, V., Keller, H., Schmidt, S. & Weichenrieder, O. Retrotransposition and crystal structure of an Alu RNP in the ribosome-stalling conformation. Mol. Cell 60, 715–727 (2015).

    CAS  PubMed  Google Scholar 

  35. Hancks, D. C., Goodier, J. L., Mandal, P. K., Cheung, L. E. & Kazazian, H. H. Jr. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum. Mol. Genet. 20, 3386–3400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Buzdin, A. et al. A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3′ terminus of L1. Genomics 80, 402–406 (2002).

    CAS  PubMed  Google Scholar 

  37. Doucet, A. J., Droc, G., Siol, O., Audoux, J. & Gilbert, N. U6 snRNA pseudogenes: markers of retrotransposition dynamics in mammals. Mol. Biol. Evol. 32, 1815–1832 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363–367 (2000).

    CAS  PubMed  Google Scholar 

  39. Gagnier, L., Belancio, V. P. & Mager, D. L. Mouse germ line mutations due to retrotransposon insertions. Mob. DNA 10, 15 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Dewannieux, M. et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 16, 1548–1556 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mager, D. L. & Stoye, J. P. Mammalian endogenous retroviruses. Microbiol. Spectr. 3, MDNA3-0009-2014 (2015).

    PubMed  Google Scholar 

  42. Belshaw, R. et al. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J. Virol. 79, 12507–12514 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wildschutte, J. H. et al. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc. Natl Acad. Sci. USA 113, E2326–E2334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomas, J., Perron, H. & Feschotte, C. Variation in proviral content among human genomes mediated by LTR recombination. Mob. DNA 9, 36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Buzdin, A., Kovalskaya-Alexandrova, E., Gogvadze, E. & Sverdlov, E. At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J. Virol. 80, 10752–10762 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Skowronski, J., Fanning, T. G. & Singer, M. F. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol. Cell. Biol. 8, 1385–1397 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Deininger, P. et al. A comprehensive approach to expression of L1 loci. Nucleic Acids Res 45, e31 (2017).

    PubMed Central  Google Scholar 

  49. Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Imbeault, M., Helleboid, P. Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017). This report presents the large-scale mapping of KZFPs to transposable elements, demonstrating the potential for regulatory repurposing.

    CAS  PubMed  Google Scholar 

  51. Quenneville, S. et al. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2, 766–773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    CAS  PubMed  Google Scholar 

  53. Molaro, A. & Malik, H. S. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr. Opin. Genet. Dev. 37, 51–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285 (2007).

    CAS  PubMed  Google Scholar 

  55. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLOS Genet. 9, e1003470 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Crow, M. K. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity 43, 7–16 (2010).

    CAS  PubMed  Google Scholar 

  57. Poduri, A., Evrony, G. D., Cai, X. & Walsh, C. A. Somatic mutation, genomic variation, and neurological disease. Science 341, 1237758 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Scott, E. C. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 26, 745–755 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodic, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shukla, R. et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 101–111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Helman, E. et al. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res. 24, 1053–1063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodic, N. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat. Med. 21, 1060–1064 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang, Z. et al. Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc. Natl Acad. Sci. USA 114, E733–E740 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nguyen, T. H. M. et al. L1 retrotransposon heterogeneity in ovarian tumor cell evolution. Cell Rep. 23, 3730–3740 (2018).

    CAS  PubMed  Google Scholar 

  67. Burns, K. H. Transposable elements in cancer. Nat. Rev. Cancer 17, 415–424 (2017).

    CAS  PubMed  Google Scholar 

  68. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992).

    CAS  PubMed  Google Scholar 

  69. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Leonova, K. I. et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl Acad. Sci. USA 110, E89–E98 (2013).

    CAS  PubMed  Google Scholar 

  72. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones, P. A., Ohtani, H., Chakravarthy, A. & De Carvalho, D. D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151–161 (2019).

    CAS  PubMed  Google Scholar 

  74. Gannon, H. S. et al. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun. 9, 5450 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Hancks, D. C. & Kazazian, H. H. Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Kazazian, H. H. Jr. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988). This classic report is the first to report a disease-causing TE insertion.

    CAS  PubMed  Google Scholar 

  77. Apoil, P. A., Kuhlein, E., Robert, A., Rubie, H. & Blancher, A. HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene. Immunogenetics 59, 17–23 (2007).

    CAS  PubMed  Google Scholar 

  78. Nakamura, Y. et al. SVA retrotransposition in exon 6 of the coagulation factor IX gene causing severe hemophilia B. Int. J. Hematol. 102, 134–139 (2015).

    CAS  PubMed  Google Scholar 

  79. Taskesen, M. et al. Novel Alu retrotransposon insertion leading to Alstrom syndrome. Hum. Genet. 131, 407–413 (2012).

    CAS  PubMed  Google Scholar 

  80. Claverie-Martin, F., Flores, C., Anton-Gamero, M., Gonzalez-Acosta, H. & Garcia-Nieto, V. The Alu insertion in the CLCN5 gene of a patient with Dent’s disease leads to exon 11 skipping. J. Hum. Genet. 50, 370–374 (2005).

    CAS  PubMed  Google Scholar 

  81. Narita, N. et al. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J. Clin. Invest. 91, 1862–1867 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wallace, M. R. et al. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866 (1991).

    CAS  PubMed  Google Scholar 

  83. Gallus, G. N. et al. Alu-element insertion in an OPA1 intron sequence associated with autosomal dominant optic atrophy. Mol. Vis. 16, 178–183 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Meischl, C., Boer, M., Ahlin, A. & Roos, D. A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur. J. Hum. Genet. 8, 697–703 (2000).

    CAS  PubMed  Google Scholar 

  85. Rodriguez-Martin, C. et al. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene. J. Hum. Genet. 61, 463–466 (2016).

    PubMed  Google Scholar 

  86. Lev-Maor, G. et al. Intronic Alus influence alternative splicing. PLOS Genet. 4, e1000204 (2008).

    PubMed  PubMed Central  Google Scholar 

  87. Hancks, D. C., Ewing, A. D., Chen, J. E., Tokunaga, K. & Kazazian, H. H. Jr. Exon-trapping mediated by the human retrotransposon SVA. Genome Res. 19, 1983–1991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sela, N., Mersch, B., Hotz-Wagenblatt, A. & Ast, G. Characteristics of transposable element exonization within human and mouse. PLOS ONE 5, e10907 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. van der Klift, H. M., Tops, C. M., Hes, F. J., Devilee, P. & Wijnen, J. T. Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome. Hum. Mutat. 33, 1051–1055 (2012).

    PubMed  Google Scholar 

  90. de Boer, M. et al. Primary immunodeficiency caused by an exonized retroposed gene copy inserted in the CYBB gene. Hum. Mutat. 35, 486–496 (2014).

    PubMed  Google Scholar 

  91. Vogt, J. et al. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol. 15, R80 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Mine, M. et al. A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum. Mutat. 28, 137–142 (2007).

    CAS  PubMed  Google Scholar 

  93. Peixoto, A. et al. Genomic characterization of two large Alu-mediated rearrangements of the BRCA1 gene. J. Hum. Genet. 58, 78–83 (2013).

    CAS  PubMed  Google Scholar 

  94. Morrish, T. A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002).

    CAS  PubMed  Google Scholar 

  95. Morisada, N. et al. Branchio-oto-renal syndrome caused by partial EYA1 deletion due to LINE-1 insertion. Pediatr. Nephrol. 25, 1343–1348 (2010).

    PubMed  Google Scholar 

  96. Kazazian, H. H. Jr. & Moran, J. V. Mobile DNA in health and disease. N. Engl. J. Med. 377, 361–370 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wimmer, K., Callens, T., Wernstedt, A. & Messiaen, L. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLOS Genet. 7, e1002371 (2011). This analysis focuses on the NF1 locus in patients with neurofibromatosis-identified frequent TPRT insertions; similar analyses at loci for other monogenic disease genes will likely find more de novo TE insertions.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kobayashi, K. et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392 (1998).

    CAS  PubMed  Google Scholar 

  99. Taniguchi-Ikeda, M. et al. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478, 127–131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kagawa, T. et al. Recessive inheritance of population-specific intronic LINE-1 insertion causes a Rotor syndrome phenotype. Hum. Mutat. 36, 327–332 (2015).

    CAS  PubMed  Google Scholar 

  101. Tucker, B. A. et al. Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc. Natl Acad. Sci. USA 108, E569–E576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Makino, S. et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am. J. Hum. Genet. 80, 393–406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172, 897–909.e21 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bragg, D. C. et al. Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc. Natl Acad. Sci. USA 114, E11020–E11028 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Payer, L. M. et al. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc. Natl Acad. Sci. USA 114, E3984–E3992 (2017). This study demonstrates that polymorphic TEs are potential causative variants in common diseases studied by GWAS.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, L., Norris, E. T. & Jordan, I. K. Human retrotransposon insertion polymorphisms are associated with health and disease via gene regulatory phenotypes. Front. Microbiol. 8, 1418 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Payer, L. M. et al. Alu insertion variants alter mRNA splicing. Nucleic Acids Res. 47, 421–431 (2019). This study reports a mechanism by which common insertion variants contribute to disease risk by inducing splicing quantitative trait loci.

    CAS  PubMed  Google Scholar 

  108. De Jager, P. L. et al. The role of the CD58 locus in multiple sclerosis. Proc. Natl Acad. Sci. USA 106, 5264–5269 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. Wang, L., Rishishwar, L., Marino-Ramirez, L. & Jordan, I. K. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements. Nucleic Acids Res. 45, 2318–2328 (2017).

    CAS  PubMed  Google Scholar 

  110. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Su, L. K. et al. Genomic rearrangements of the APC tumor-suppressor gene in familial adenomatous polyposis. Hum. Genet. 106, 101–107 (2000).

    CAS  PubMed  Google Scholar 

  112. Garland, J. et al. Identification of an Alu element-mediated deletion in the promoter region of GNE in siblings with GNE myopathy. Mol. Genet. Genomic Med. 5, 410–417 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rickman, K. A. et al. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of fanconi anemia. Cell Rep. 12, 35–41 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Brooks, E. M., Branda, R. F., Nicklas, J. A. & O’Neill, J. P. Molecular description of three macro-deletions and an Alu–Alu recombination-mediated duplication in the HPRT gene in four patients with Lesch–Nyhan disease. Mutat. Res. 476, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  115. Gu, S. et al. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum. Mol. Genet. 24, 4061–4077 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nazaryan-Petersen, L. et al. Germline chromothripsis driven by l1-mediated retrotransposition and Alu/Alu homologous recombination. Hum. Mutat. 37, 385–395 (2016).

    CAS  PubMed  Google Scholar 

  117. Burwinkel, B. & Kilimann, M. W. Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J. Mol. Biol. 277, 513–517 (1998).

    CAS  PubMed  Google Scholar 

  118. Temtamy, S. A. et al. Long interspersed nuclear element-1 (LINE1)-mediated deletion of EVC, EVC2, C4orf6, and STK32B in Ellis–van Creveld syndrome with borderline intelligence. Hum. Mutat. 29, 931–938 (2008).

    CAS  PubMed  Google Scholar 

  119. Sun, C. et al. Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum. Mol. Genet. 9, 2291–2296 (2000).

    CAS  PubMed  Google Scholar 

  120. Segal, Y. et al. LINE-1 elements at the sites of molecular rearrangements in Alport syndrome–diffuse leiomyomatosis. Am. J. Hum. Genet. 64, 62–69 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    CAS  PubMed  Google Scholar 

  122. Ecco, G. et al. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev. Cell 36, 611–623 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chuong, E. B., Rumi, M. A., Soares, M. J. & Baker, J. C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dunn-Fletcher, C. E. et al. Anthropoid primate-specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length. PLOS Biol. 16, e2006337 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lev-Maor, G., Sorek, R., Shomron, N. & Ast, G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300, 1288–1291 (2003).

    CAS  PubMed  Google Scholar 

  127. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    CAS  PubMed  Google Scholar 

  128. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    CAS  PubMed  Google Scholar 

  129. Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLOS Biol. 3, e181 (2005).

    PubMed  PubMed Central  Google Scholar 

  130. Hencken, C. G., Li, X. & Craig, N. L. Functional characterization of an active Rag-like transposase. Nat. Struct. Mol. Biol. 19, 834–836 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Huang, S. et al. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166, 102–114 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, Y. et al. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 569, 79–84 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sinzelle, L., Izsvak, Z. & Ivics, Z. Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol. Life Sci. 66, 1073–1093 (2009).

    CAS  PubMed  Google Scholar 

  134. Smit, A. F. & Riggs, A. D. Tiggers and DNA transposon fossils in the human genome. Proc. Natl Acad. Sci. USA 93, 1443–1448 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sarkar, A. et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related ‘domesticated’ sequences. Mol. Genet. Genomics 270, 173–180 (2003).

    CAS  PubMed  Google Scholar 

  136. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).

    Google Scholar 

  137. Stessman, H. A. F. et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am. J. Hum. Genet. 98, 541–552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Henssen, A. G. et al. Genomic DNA transposition induced by human PGBD5. eLife 4, e10565 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Henssen, A. G. et al. PGBD5 promotes site-specific oncogenic mutations in human tumors. Nat. Genet. 49, 1005–1014 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Henssen, A. G. et al. Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. Sci. Transl Med. 9, eaam9078 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Blaise, S., de Parseval, N., Benit, L. & Heidmann, T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl Acad. Sci. USA 100, 13013–13018 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Blond, J. L. et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74, 3321–3329 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Mi, S. et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000).

    CAS  PubMed  Google Scholar 

  144. Cornelis, G. et al. An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc. Natl Acad. Sci. USA 114, E10991–E11000 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Emerson, R. O. & Thomas, J. H. Gypsy and the birth of the SCAN domain. J. Virol. 85, 12043–12052 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res 47, e27 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jin, Y., Tam, O. H., Paniagua, E. & Hammell, M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31, 3593–3599 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Philippe, C. et al. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. eLife 5, e13926 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Goerner-Potvin, P. & Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet. 19, 688–704 (2018).

    CAS  PubMed  Google Scholar 

  150. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLOS Biol. 2, e391 (2004).

    PubMed  PubMed Central  Google Scholar 

  152. Chen, L. L., DeCerbo, J. N. & Carmichael, G. G. Alu element-mediated gene silencing. EMBO J. 27, 1694–1705 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kawahara, Y. & Nishikura, K. Extensive adenosine-to-inosine editing detected in Alu repeats of antisense RNAs reveals scarcity of sense-antisense duplex formation. FEBS Lett. 580, 2301–2305 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Spengler, R. M., Oakley, C. K. & Davidson, B. L. Functional microRNAs and target sites are created by lineage-specific transposition. Hum. Mol. Genet. 23, 1783–1793 (2014).

    CAS  PubMed  Google Scholar 

  156. Wang, L. & Jordan, I. K. Transposable element activity, genome regulation and human health. Curr. Opin. Genet. Dev. 49, 25–33 (2018).

    CAS  PubMed  Google Scholar 

  157. Gardner, E. J. et al. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res. 27, 1916–1929 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors thank many members of the transposable element research community for engaging conversations that have shaped their ideas, and they apologize to these colleagues for unreferenced work. The authors thank M. Gorbounov for technical assistance with L1 ORF1p staining.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kathleen H. Burns.

Ethics declarations

Competing interests

K.H.B. and the Johns Hopkins University School of Medicine have licenced antibodies for L1 ORF1p to EMD Millipore. L.M.P. declares no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks G. Faulkner, I. K. Jordan and D. Mager for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

dbvar: www.ncbi.nlm.nih.gov/dbvar

Online Mendelian Inheritance in Man: https://www.omim.org

Glossary

Transposable elements

(TEs). DNA sequences that have the ability to move (transpose) to new locations in the genome.

Retrotransposons

DNA sequences that proliferate in the genome using an RNA intermediate and a ‘copy-and-paste’ retrotransposition mechanism.

Complex diseases

Common diseases caused by interactions of genetics, behaviour and the environment.

Long interspersed element 1

(LINE-1 or L1). An autonomous (protein-coding) retrotransposon; currently, Homo sapiens-specific L1 (L1Hs) are active.

Target primed reverse transcription

(TPRT). The form of retrotransposition used by non-long terminal repeat elements; in humans, this requires L1 ORF2p-encoded endonuclease and reverse transcriptase activities.

Alu

A short interspersed element derived from 7SL RNA, a non-autonomous retrotransposon that relies on L1-encoded ORF2p.

SVA

A composite retrotransposon made of short interspersed element, variable number tandem repeat and Alu sequences; also uses L1 protein to transpose.

Processed pseudogenes

cDNA copy of a gene transcript inserted into the genome.

Endogenous retroviruses

(ERVs). Autonomous (protein-coding) retrotransposons recently active in humans; also known as LTR elements for their long terminal repeats.

Polymorphic TEs

Also known as retrotransposon insertion polymorphisms or polymorphic mobile element insertions. A transposable element (TE) insertion that is a structural variant in a population, present or absence at a locus.

Minor allele frequency

For biallelic loci, the allele frequency for the second most common allele, as opposed to the major allele frequency; the two sum to 1 (p + q = 1).

Synthetic lethalities

Cell deaths in response to a combination of two attributes, most often genetic lesions, when either one of which would be well tolerated.

A-to-I editing

Conversion of adenosine (A) to inosine (I) in double-stranded RNA by adenosine deaminase acting on RNA 1 (ADAR1); relaxes strand annealing. Unedited hybrids in contact with cytoplasmic double-stranded RNA sensors can prompt interferon responses.

Exonization

Incorporation of a new exon into a processed transcript; in this review, the incorporation of some transposable element sequences into a spliced mRNA.

Endonuclease-independent retrotransposition

A process whereby a retrotransposon inserts at a pre-existing DNA break.

Haplotype

An interval of DNA wherein a set of alleles is inherited as a group because of linkage disequilibrium.

Linkage disequilibrium

The non-random association of alleles on the same DNA strand.

Expression quantitative trait loci

(eQTLs). Sequence variants that are associated with alterations in mRNA levels.

Splicing quantitative trait loci

Sequence variants that are associated with alterations in mRNA splicing.

Chromothripsis

Chromosomal shattering. A large number of rearrangements occurring in a single event over limited genomic regions.

GWAS trait-associated SNP

A single-nucleotide polymorphism (SNP) identified by a genome-wide association study (GWAS) as being associated with a disease or phenotypic trait.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payer, L.M., Burns, K.H. Transposable elements in human genetic disease. Nat Rev Genet 20, 760–772 (2019). https://doi.org/10.1038/s41576-019-0165-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-019-0165-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing