Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacogenomic genotypes define genetic ancestry in patients and enable population-specific genomic implementation

Abstract

The importance of genetic ancestry characterization is increasing in genomic implementation efforts, and clinical pharmacogenomic guidelines are being published that include population-specific recommendations. Our aim was to test the ability of focused clinical pharmacogenomic SNP panels to estimate individual genetic ancestry (IGA) and implement population-specific pharmacogenomic clinical decision-support (CDS) tools. Principle components and STRUCTURE were utilized to assess differences in genetic composition and estimate IGA among 1572 individuals from 1000 Genomes, two independent cohorts of Caucasians and African Americans (AAs), plus a real-world validation population of patients undergoing pharmacogenomic genotyping. We found that clinical pharmacogenomic SNP panels accurately estimate IGA compared to genome-wide genotyping and identify AAs with ≥70 African ancestry (sensitivity >82%, specificity >80%, PPV >95%, NPV >47%). We also validated a new AA-specific warfarin dosing algorithm for patients with ≥70% African ancestry and implemented it at our institution as a novel CDS tool. Consideration of IGA to develop an institutional CDS tool was accomplished to enable population-specific pharmacogenomic guidance at the point-of-care. These capabilities were immediately applied for guidance of warfarin dosing in AAs versus Caucasians, but also provide a real-world model that can be extended to other populations and drugs as actionable genomic evidence accumulates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bachtiar M, Lee CGL. Genetics of population differences in drug response. Curr Genet Med Rep. 2013;1:162–70.

    Article  Google Scholar 

  2. Bonifaz-Pena V, Contreras AV, Struchiner CJ, Roela RA, Furuya-Mazzotti TK, Chammas R, et al. Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations. PLoS ONE. 2014;9:e112640.

    Article  Google Scholar 

  3. Jittikoon J, Mahasirimongkol S, Charoenyingwattana A, Chaikledkaew U, Tragulpiankit P, Mangmool S, et al. Comparison of genetic variation in drug ADME-related genes in Thais with Caucasian, African and Asian HapMap populations. J Hum Genet. 2016;61:119–27.

    Article  CAS  Google Scholar 

  4. Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, et al. Population genetic structure of variable drug response. Nat Genet. 2001;29:265–9.

    Article  CAS  Google Scholar 

  5. Ramos E, Doumatey A, Elkahloun AG, Shriner D, Huang H, Chen G, et al. Pharmacogenomics, ancestry and clinical decision making for global populations. Pharm J. 2014;14:217–22.

    CAS  Google Scholar 

  6. Nagai R, Ohara M, Cavallari LH, Drozda K, Patel SR, Nutescu EA, et al. Factors influencing pharmacokinetics of warfarin in African-Americans: implications for pharmacogenetic dosing algorithms. Pharmacogenomics. 2015;16:217–25.

    Article  CAS  Google Scholar 

  7. Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet. 2013;382:790–6.

    Article  CAS  Google Scholar 

  8. Perera MA, Gamazon E, Cavallari LH, Patel SR, Poindexter S, Kittles RA, et al. The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. Clin Pharm Ther. 2011;89:408–15.

    Article  CAS  Google Scholar 

  9. Lakiotaki K, Kanterakis A, Kartsaki E, Katsila T, Patrinos GP, Potamias G. Exploring public genomics data for population pharmacogenomics. PLoS ONE. 2017;12:e0182138.

    Article  Google Scholar 

  10. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369:2283–93.

    Article  CAS  Google Scholar 

  11. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther. 2017;102:397–404.

  12. Parra EJ, Kittles RA, Argyropoulos G, Pfaff CL, Hiester K, Bonilla C, et al. Ancestral proportions and admixture dynamics in geographically defined African Americans living in South Carolina. Am J Phys Anthropol. 2001;114:18–29.

    Article  CAS  Google Scholar 

  13. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324:1035–44.

    Article  CAS  Google Scholar 

  14. Cavallari LH, Langaee TY, Momary KM, Shapiro NL, Nutescu EA, Coty WA, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharm Ther. 2010;87:459–64.

    Article  CAS  Google Scholar 

  15. Hernandez W, Aquino-Michaels K, Drozda K, Patel S, Jeong Y, Takahashi H, et al. Novel single nucleotide polymorphism in CYP2C9 is associated with changes in warfarin clearance and CYP2C9 expression levels in African Americans. Transl Res. 2015;165:651–7.

    Article  CAS  Google Scholar 

  16. Hernandez W, Gamazon ER, Aquino-Michaels K, Patel S, O’Brien TJ, Harralson AF, et al. Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans. Pharm J. 2014;14:223–8.

    CAS  Google Scholar 

  17. Jackson JN, Long KM, He Y, Motsinger-Reif AA, McLeod HL, Jack J. A comparison of DMET Plus microarray and genome-wide technologies by assessing population substructure. Pharmacogenet Genomics. 2016;26:147–53.

  18. Mizzi C, Dalabira E, Kumuthini J, Dzimiri N, Balogh I, Basak N, et al. A European spectrum of pharmacogenomic biomarkers: implications for clinical pharmacogenomics. PLoS ONE. 2016;11:e0162866.

    Article  Google Scholar 

  19. Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC, et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharm Toxicol. 2015;55:89–106.

    Article  CAS  Google Scholar 

  20. Luzum JA, Pakyz RE, Elsey AR, Haidar CE, Peterson JF, Whirl-Carrillo M, et al. The pharmacogenomics research network translational pharmacogenetics program: outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin Pharmacol Ther. 2017;102:502–10.

  21. Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15:258–67.

    Article  Google Scholar 

  22. O’Donnell PH, Wadhwa N, Danahey K, Borden BA, Lee SM, Hall JP, et al. Pharmacogenomics-based point-of-care clinical decision support significantly alters drug prescribing. Clin Pharmacol Ther. 2017.

  23. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.

    Article  CAS  Google Scholar 

  24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  Google Scholar 

  25. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    Article  CAS  Google Scholar 

  26. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, International Warfarin Pharmacogenetics Consortium, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.

    Article  CAS  Google Scholar 

  28. O’Donnell PH, Bush A, Spitz J, Danahey K, Saner D, Das S, et al. The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin Pharm Ther. 2012;92:446–9.

    Article  Google Scholar 

  29. Li J, Zhang L, Zhou H, Stoneking M, Tang K. Global patterns of genetic diversity and signals of natural selection for human ADME genes. Hum Mol Genet. 2011;20:528–40.

    Article  CAS  Google Scholar 

  30. Bonham VL, Callier SL, Royal CD. Will Precision medicine move us beyond race? N Engl J Med. 2016;374:2003–5.

    Article  Google Scholar 

  31. Cavallari LH, Perera MA. The future of warfarin pharmacogenetics in under-represented minority groups. Future Cardiol. 2012;8:563–76.

    Article  CAS  Google Scholar 

  32. Drozda K, Wong S, Patel SR, Bress AP, Nutescu EA, Kittles RA, et al. Poor warfarin dose prediction with pharmacogenetic algorithms that exclude genotypes important for African Americans. Pharm Genom. 2015;25:73–81.

    Article  CAS  Google Scholar 

  33. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115:3827–34.

    Article  CAS  Google Scholar 

  34. Obeng AO, Kaszemacher T, Abul-Husn NS, Gottesman O, Vega A, Waite E, et al. Implementing algorithm-guided warfarin dosing in an ethnically diverse patient population using electronic health records and preemptive CYP2C9 and VKORC1 genetic testing. Clin Pharm Ther. 2016;100:427–30.

    Article  CAS  Google Scholar 

  35. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369:2294–303.

    Article  CAS  Google Scholar 

  36. International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  Google Scholar 

  37. Ramamoorthy A, Pacanowski MA, Bull J, Zhang L. Racial/ethnic differences in drug disposition and response: review of recently approved drugs. Clin Pharm Ther. 2015;97:263–73.

    Article  CAS  Google Scholar 

  38. van Kuilenburg AB. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40:939–50.

    Article  Google Scholar 

  39. Offer SM, Lee AM, Mattison LK, Fossum C, Wegner NJ, Diasio RB. A DPYD variant (Y186C) in individuals of african ancestry is associated with reduced DPD enzyme activity. Clin Pharm Ther. 2013;94:158–66.

    Article  CAS  Google Scholar 

  40. Dean L. Clopidogrel therapy and cyp2c19 genotype. In: Pratt VMH, Dean L, et al., editors. Bethesda, MD: National Center for Biotechnology Information (US); 2012:109–20 (Updated 2015).

  41. Gong Y, Wang Z, Beitelshees AL, McDonough CW, Langaee TY, Hall K, et al. Pharmacogenomic genome-wide meta-analysis of blood pressure response to beta-blockers in hypertensive African Americans. Hypertension. 2016;67:556–63.

    Article  CAS  Google Scholar 

  42. O’Donnell PH, Dolan ME. Cancer pharmacoethnicity: ethnic differences in susceptibility to the effects of chemotherapy. Clin Cancer Res. 2009;15:4806–14.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by an NIH/National Heart, Lung, and Blood Institute/Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship 1F32HL123311-01A1 (WH), KL2 TR 002387 (WH); NIH K23 GM 100288-01A1 (PHO), NIH/National Heart, Lung, and Blood Institute grant 5 U01 HL105198-09 (PHO and MJR); NIH U54 MD010723 (DOM and MAP); The William F. O’Connor Foundation, and The University of Chicago Comprehensive Cancer Center support grant. We would also like to thank Andrew Skol, Ph.D. for his invaluable guidance in data analysis.

Author information

Authors and Affiliations

Authors

Contributions

WH and PHO wrote the manuscript; WH, KD, XP, KJY, EL, MAP, and PHO collected data; WH, SLV, MJR, DOM, BES, MAP, and PHO designed research; WH, KD, BES, MAP, and PHO interpreted data; WH, KD, MAP, and PHO performed research and analyzed data.

Corresponding author

Correspondence to Peter H. O’Donnell.

Ethics declarations

Conflict of interest

KD, MJR, and PHO are co-inventors on a pending patent application for a Genomic Prescribing System. MJR receives royalties related to UGT1A1 genotyping, but no royalties were received from the genotyping performed in this work. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, W., Danahey, K., Pei, X. et al. Pharmacogenomic genotypes define genetic ancestry in patients and enable population-specific genomic implementation. Pharmacogenomics J 20, 126–135 (2020). https://doi.org/10.1038/s41397-019-0095-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0095-z

This article is cited by

Search

Quick links