Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis and properties of long-chain-branched poly(aryl ether sulfone)-poly(tetrahydrofuran) multiblock copolymers

Abstract

Long-chain-branched poly(aryl ether sulfone)-poly(tetrahydrofuran) multiblock copolymers (PES-BPTHF) composed of hard linear and soft branching segments were synthesized from bromo-terminated poly(tetrahydrofuran) and hydroxy-terminated poly(aryl ether sulfone). A study on the effect of concentration on polymerization behavior revealed that soluble powder was obtained at the optimized reaction concentration of 7 wt%. Gelation and intramolecular cyclization were observed at high and low concentrations, respectively. The microphase-separated morphology of PES-BPTHF was confirmed by atomic force microscopy, small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA) measurements. Fewer entangled poly(tetrahydrofuran) segments were detected in PES-BPTHF than in PES-PTHF by SAXS, DMA and tensile measurements. Rheological measurements suggested high chain entanglement of PES-BPTHF in its melt phase. It is interesting to note that the polymer chains in the soft domains become less entangled and more reminiscent of hyperbranched architectures, whereas the overall chain entanglements are increased due to the long-chain-branched structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jikei M, Kakimoto M. Hyperbranched polymers: a promising new class of materials. Prog Polym Sci. 2001;26:1233–85.

    Article  CAS  Google Scholar 

  2. Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Prog Polym Sci. 2004;29:183–275.

    Article  CAS  Google Scholar 

  3. Voit BI, Lederer A. Hyperbranched and highly branched polymer architectures—synthetic strategies and major characterization aspects. Chem Rev. 2009;109:5924–73.

    Article  CAS  Google Scholar 

  4. Chen H, Kong J. Hyperbranched polymers from A2 + B3 strategy: recent advances in description and control of fine topology. Polym Chem. 2016;7:3643–63.

    Article  CAS  Google Scholar 

  5. Trollsås M, Kelly MA, Claesson H, Siemens R, Hedrick JL. Highly branched block copolymers: design, synthesis, and morphology. Macromolecules. 1999;32:4917–24.

    Article  Google Scholar 

  6. Hutchings LR, Dodds JM, Roberts-Bleming SJ. Hypermacs. Long chain branched analogues of hyperbranched polymers prepared by the polycondensation of AB2 macromonomers. Macromol Symp. 2006;240:56–67.

    Article  CAS  Google Scholar 

  7. Clarke N, Luca ED, Dodds JM, Kimani SM, Hutchings LR. Hypermacs—Long chain hyperbranched polymers: a dramatically improved synthesis and qualitative rheological analysis. Eur Polym J. 2008;44:665–76.

    Article  CAS  Google Scholar 

  8. Hutchings LR. Dendrimacs and hypermacs—emerging as more than just model branched polymers. Soft Matter 2008;4:2150–9.

    Article  CAS  Google Scholar 

  9. Hutchings LR, Dodds JM, Rees D, Kimani SM, Wu JJ, Smith E. Hypermacs to hyperblocks: a novel class of branched thermoplastic elastomer. Macromolecules. 2009;42:8675–87.

    Article  CAS  Google Scholar 

  10. Konkolewicz D, Gray-Weale A, Perrier S. Hyperbranched polymers by thiol-yne chemistry: from small molecules to functional polymers. J Am Chem Soc 2009;131:18075–7.

    Article  CAS  Google Scholar 

  11. Pang Y, Liu J, Wu J, Li G, Wang R, Su Y, et al. Synthesis, characterization, and in vitro evaluation of long-chain hyperbranched poly(ethylene glycol) as drug carrier. Bioconj Chem 2010;21:2093–102.

    Article  CAS  Google Scholar 

  12. He C, Li L-W, He W-D, Jiang W-X, Wu C. “Click” long seesaw-type ABA chains together into huge defect-free hyperbranched polymer chains with uniform subchains. Macromolecules. 2011;44:6233–6.

    Article  CAS  Google Scholar 

  13. Li L, He C, He W, Wu C. Formation kinetics and scaling of “defect-free” hyperbranched polystyrene chains with uniform subchains prepared from seesaw-type macromonomers. Macromolecules. 2011;44:8195–206.

    Article  CAS  Google Scholar 

  14. Barbey R, Perrier S. Synthesis of polystyrene-based hyperbranched polymers by thiol–yne chemistry: a detailed investigation. Macromolecules. 2014;47:6697–705.

    Article  CAS  Google Scholar 

  15. Yang J, Li L, Jing Z, Ye X, Wu C. Construction and properties of hyperbranched block copolymer with independently adjustable heterosubchains. Macromolecules. 2014;47:8437–45.

    Article  CAS  Google Scholar 

  16. Li J, Xiang Y, Zheng S. Hyperbranched block copolymer from AB2 macromonomer: synthesis and its reaction-induced microphase separation in epoxy thermosets. J Polym Sci, Part A: Polym Chem. 2016;54:368–80.

    Article  CAS  Google Scholar 

  17. Li P-Y, He W-D, Chen S-Q, Lu X-X, Li J-M, Li H-J. Formation of long sub-chain hyperbranched poly(methyl methacrylate) based on inhibited self-cyclization of seesaw macromonomers. Polym Chem. 2016;7:4842–51.

    Article  CAS  Google Scholar 

  18. Gottschalk C, Frey H. Hyperbranched polylactide copolymers. Macromolecules. 2006;39:1719–23.

    Article  CAS  Google Scholar 

  19. Jikei M, Suzuki M, Itoh K, Matsumoto K, Saito Y, Kawaguchi S. Synthesis of hyperbranched poly(l-lactide)s by self-polycondensation of AB2 macromonomers and their structural characterization by light scattering measurements. Macromolecules. 2012;45:8237–44.

    Article  CAS  Google Scholar 

  20. Jikei M, Uchida D, Matsumoto K, Komuro R, Sugimoto M. Synthesis and properties of long-chain branched poly(ether sulfone)s by self-polycondensation of AB2 type macromonomers. J Polym Sci, Part A: Polym Chem. 2014;52:1825–31.

    Article  CAS  Google Scholar 

  21. Jikei M, Chon S-H, Kakimoto M, Kawauchi S, Imase T, Watanabe J. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid. Macromolecules. 1999;32:2061–4.

    Article  CAS  Google Scholar 

  22. Flory PJ. Pronciples of polymer chemistry. Cornell University Press, Ithaca and London; 1953, p. 347−98.

  23. Unal S, Yilgor I, Yilgor E, Sheth JP, Wilkes GL, Long TE. A new generation of highly branched polymers: hyperbranched, segmented poly(urethane urea) elastomers. Macromolecules. 2004;37:7081–4.

    Article  CAS  Google Scholar 

  24. McKee MG, Unal S, Wilkes GL, Long TE. Branched polyesters: recent advances in synthesis and performance. Prog Polym Sci. 2005;30:507–39.

    Article  CAS  Google Scholar 

  25. Unal S, Lin Q, Mourey TH, Long TE. Tailoring the degree of branching: preparation of poly(ether ester)s via copolymerization of poly(ethylene glycol) oligomers (A2) and 1,3,5-benzenetricarbonyl trichloride (B3). Macromolecules. 2005;38:3246–54.

    Article  CAS  Google Scholar 

  26. Lin Q, Unal S, Fornof AR, Yilgor I, Long TE. Highly branched poly(arylene ether)s via oligomeric A2 + B3 strategies. Macromol Chem Phys. 2006;207:576–86.

    Article  CAS  Google Scholar 

  27. Unal S, Long TE. Highly branched poly(ether ester)s via cyclization-free melt condensation of A2 oligomers and B3 monomers. Macromolecules. 2006;39:2788–93.

    Article  CAS  Google Scholar 

  28. Unal S, Ozturk G, Sisson K, Long TE. Poly(caprolactone) containing highly branched segmented poly(ester urethane)s via A2 with oligomeric B3 polymerization. J Polym Sci, Part A: Polym Chem. 2008;46:6285–95.

    Article  CAS  Google Scholar 

  29. Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y. Rheology and crystallization of long-chain branched poly(l-lactide)s with controlled branch length. Ind Eng Chem Res. 2012;51:10731–41.

    Article  CAS  Google Scholar 

  30. Chen F, Chen S-C, Yang K-K, Wang X-L, Wang Y-Z. A facile approach to preparation of long-chain-branched poly(p-dioxanone). Eur Polym J. 2010;46:24–33.

    Article  Google Scholar 

  31. Yoshikawa K, Toneaki N, Moteki Y, Takahashi M, Masuda T. Dynamic viscoelasticity, stress relaxation and elongational flow behavior of high density polyethylene melts. Nihon Reoroji Gakkaishi. 1990;18:80–6.

    Article  CAS  Google Scholar 

  32. Dreyfuss P. Poly(tetrahydrofuran). Gordon and Breach, Science Publishers, Inc. New York; 1982, p. 157−92.

  33. An H, Bradshaw JS, Krakowiak KE, Tarbet BJ, Dalley NK, Kou X, et al. Novel benzene-bridged macrobi- and macrotricyclic polyethers. J Org Chem. 1993;58:7694–9.

    Article  CAS  Google Scholar 

  34. Dubreuil ME, Goethals EJ. Endgroup-functionalized polytetrahydrofurans bypolymerization with functional triflate esters, 1 polyTHF-macromonomers. Macromol Chem Phys. 1997;198:3077–87.

    Article  CAS  Google Scholar 

  35. Dubreuil MF, Farcy NG, Goethals EJ. Influence of the alkyl group of triflate esters on their initiation ability for the cationic ring-opening polymerization of tetrahydrofuran. Macromol Rapid Commun. 1999;20:383–6.

    Article  CAS  Google Scholar 

  36. Oike H, Yoshioka Y, Kobayashi S, Nakashima M, Tezuka Y, Goethals EJ. Benzylic triflates prepared in-situ: novel initiators for mono-, bi- and trifunctional living poly(THF)s. Macromol Rapid Commun. 2000;21:1185–90.

    Article  CAS  Google Scholar 

  37. Smith S, Hubin AJ. The preparation and chemistry of dicationically active polymers of tetrahydrofuran. J Macromol Sci -Chem 1973;A7:1399–413.

    Article  Google Scholar 

  38. Ban Q, Kong J. Intramolecular cyclization of long-chain hyperbranched polymers (hypermacs) from A2 + Bn step-wise polymerization. Polym Chem. 2016;7:4717–27.

    Article  CAS  Google Scholar 

  39. Jikei M, Aikawa Y, Matsumoto K. Synthesis and properties of poly(ether sulfone)-poly(tetrahydrofuran) multiblock copolymers. High Perform Polym. 2016;28:1015–23.

    Article  CAS  Google Scholar 

  40. Zang Y-H, Carreau PJ. A correlation between critical end-to-end distance for entanglements and molecular chain diameter of polymers. J Appl Polym Sci. 1991;42:1965–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by a grant co-funded by three National Universities of Northern Tohoku, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Jikei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jikei, M., Sato, A., Ha, L.T. et al. Synthesis and properties of long-chain-branched poly(aryl ether sulfone)-poly(tetrahydrofuran) multiblock copolymers. Polym J 52, 179–188 (2020). https://doi.org/10.1038/s41428-019-0261-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0261-9

This article is cited by

Search

Quick links