Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of polycyclic polyolefins by a Pd-catalyzed isomerization polymerization of vinylcycloalkanes

Abstract

Vinylcycloalkanes with 12-, 15-, and 21-membered rings were synthesized from commercially available cycloalkanones or cycloalkyl carboxylic acids derived from malonate and ω-bromo-α-alkenes. Pd complexes with diimine ligands promoted the isomerization polymerization of vinylcycloalkanes with 15- and 21-membered rings to afford polymers having cycloalkylene groups in the main chain. Vinylcycloheneicosane with a 21-membered ring afforded polymers with Mn up to 9700, whereas vinylcycloalkanes with smaller ring sizes (8- and 12-membered rings) yielded oligomers with Mn = 720–1600.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3

Similar content being viewed by others

References

  1. Takeuchi D. Synthesis and thermal properties of poly(oligomethylene-cycloalkylene)s with regulated regio- and stereochemistry. Polym J. 2018;50:573–8.

    CAS  Google Scholar 

  2. Yamazaki M. Industrialization and application development of cyclo-olefin polymer. J Mol Catal A Chem. 2004;213:81–7.

    CAS  Google Scholar 

  3. Fujita M, Coates GW. Synthesis and characterization of alternating and multiblock copolymers from ethylene and cyclopentene. Macromolecules. 2002;35:9640–7.

    CAS  Google Scholar 

  4. Hamilton JG, Ivin KJ, Rooney JJ. Ring-opening polymerisation of bicyclo[2.2.2]oct-2-ene. British. Polym J. 1985;17:41–2.

    CAS  Google Scholar 

  5. Thu CT, Bastelberger T, Höcker H. On the polymerization of bicyclo[4.2.0]octa-7-ene by a metathesis catalyst and by tungsten carbenes. Makromol Chem Rapid Commun. 1981;2:7–9.

    Google Scholar 

  6. Pasini D, Takeuchi D. Cyclopolymerizations: synthetic tools for the precision synthesis of macromolecular architectures. Chem Rev. 2018;118:8983–9057.

    CAS  PubMed  Google Scholar 

  7. Resconi L, Waymouth RM. Diastereoselectivity in the homogeneous cyclopolymerization of 1,5-hexadiene. J Am Chem Soc. 1990;112:4953–4.

    CAS  Google Scholar 

  8. Coates GW, Waymouth RM. Chiral polymers via cyclopolymerization. J Mol Catal. 1992;76:189–94.

    CAS  Google Scholar 

  9. Coates GW, Waymouth RM. Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: a novel strategy for the synthesis of optically active polymers with chirality in the main chain. J Am Chem Soc. 1993;115:91–8.

    CAS  Google Scholar 

  10. Mitani M, Oouchi K, Hayakawa M, Yamada T, Mukaiyama T. Stereoselective cyclopolymerization of 1,5-hexadiene using novel bis(ferrocenyl)zirconocene catalyst. Chem. Lett. 1995;24:905–6.

    Google Scholar 

  11. Sernetz FG, Mülhaupt R, Waymouth RM. Homo-, Co-, and terpolymerization of 1,5-hexadiene using a methylalumoxane activated mono-Cp-amido-complex. Polym Bull. 1997;38:141–8.

    CAS  Google Scholar 

  12. Jayaratne KC, Keaton RJ, Henningsen DA, Sita LR. Living Ziegler-Natta cyclopolymerization of nonconjugated dienes: new class of microphase-separated polyolefin block copolymers via a tandem polymerization/cyclopolymerization strategy. J Am Chem Soc. 2000;122:10490–1.

    CAS  Google Scholar 

  13. Kim I, Shin YS, Lee JK, Won MS. Cyclopolymerization of 1,5-hexadiene catalyzed by various stereospecific metallocene compounds. J Polym Sci Part A Polym Chem. 2000;38:1520–7.

    CAS  Google Scholar 

  14. Napoli M, Costabile C, Pragliola S, Longo P. Closing cycles with C 2-symmetric Ziegler-Natta polymerization catalysts. Macromolecules. 2005;38:5493–7.

    CAS  Google Scholar 

  15. Yeori A, Goldberg I, Shuster M, Kol M. Diastereomerically-specific zirconium complexes of chiral salan ligands: isospecific polymerization of 1-hexene and 4-methyl-1-pentene and cyclopolymerization of 1,5-hexadiene. J Am Chem Soc. 2006;128:13062–3.

    CAS  PubMed  Google Scholar 

  16. Yeori A, Goldberg I, Kol M. Cyclopolymerization of 1,5-hexadiene by enantiomerically-pure zirconium salan complexes. polymer optical activity reveals α-olefin face preference. Macromolecules. 2007;40:8521–3.

    CAS  Google Scholar 

  17. Takeuchi D, Matsuura R, Park S, Osakada K. Cyclopolymerization of 1,6-heptadienes catalyzed by iron and cobalt complexes: synthesis of polymers with trans- or cis-fused 1,2-cyclopentanediyl groups depending on the catalyst. J Am Chem Soc. 2007;129:7002–3.

    CAS  PubMed  Google Scholar 

  18. Takeuchi D, Matsuura R, Fukuda Y, Osakada K. Selective cyclopolymerization of α,ω-dienes and copolymerization with ethylene catalyzed by Fe and Co complexes. Dalton Trans. 2009;7:8955–62.

    Google Scholar 

  19. Edson JB, Coates GW. Cyclopolymerization of nonconjugated dienes with a tridentate phenoxyamine hafnium complex supported by an sp3-C donor: isotactic enchainment and diastereoselective cis-ring closure. Macromol Rapid Commun. 2009;30:1900–6.

    CAS  PubMed  Google Scholar 

  20. Crawford KE, Sita LR. Stereoengineering of poly(1,3-methylenecyclohexane) via two-state living coordination polymerization of 1,6-heptadiene. J Am Chem Soc. 2013;135:8778–81.

    CAS  PubMed  Google Scholar 

  21. Crawford KE, Sita LR. De novo design of a new class of “hard–soft” amorphous, microphase-separated, polyolefin block copolymer thermoplastic elastomers. ACS Macro Lett. 2015;4:921–5.

    CAS  Google Scholar 

  22. Naga N, Shiono T, Ikeda T. Cyclopolymerization of 1,7-octadiene with metallocene/methylaluminoxane. Macromol Chem Phys. 1999;200:1466–72.

    CAS  Google Scholar 

  23. Pragliola S, Milano G, Guerra G, Longo P. Stereoselective cyclopropanation by cyclocopolymerization of butadiene. J Am Chem Soc. 2002;124:3502.

    CAS  PubMed  Google Scholar 

  24. Choo TN, Waymouth RM. The dual-site alternating cyclocopolymerization of 1,3-butadiene with ethylene. J Am Chem Soc. 2003;125:8970–1.

    CAS  PubMed  Google Scholar 

  25. Llauro MF, Monnet C, Barbotin F, Monteil V, Spitz R, Boisson C. Investigation of ethylene/butadiene copolymers microstructure by 1H and 13C NMR. Macromolecules. 2001;34:6304–11.

    CAS  Google Scholar 

  26. Monteil V, Spitz R, Barbotin F, Boisson C. Evidence of intramolecular cyclization in copolymerization of ethylene with 1,3-butadiene: thermal properties of the resulting copolymers. Macromol Chem Phys. 2004;205:737–42.

    CAS  Google Scholar 

  27. Thuilliez J, Ricard L, Nief F, Boisson F, Boisson C. ansa-bis(fluorenyl)neodymiuim catalysts for cyclopolymerization of ethylene with butadiene. Macromolecules. 2009;42:3774–9.

    CAS  Google Scholar 

  28. Naga N, Imanishi Y. Copolymerization of ethylene and 1,7-octadiene, 1,9-decadiene with zircononcene catalysts. Macromol Chem Phys. 2002;203:2155–62.

    CAS  Google Scholar 

  29. Naga N, Toyota A. Unique insertion mode of 1,7-octadiene in copolymerization with ethylene by a constrained-geometry catalyst. Macromol Rapid Commun. 2004;25:1623–7.

    CAS  Google Scholar 

  30. Sarzotti DM, Narayan A, Whitney PM, Simon LC, Soares JBP. Microstructural characterization of molecular weight fractions of ethylene/1,7-octadiene copolymers made with a constrained geometry catalyst. Macromol Mater Eng. 2005;290:584–91.

    CAS  Google Scholar 

  31. Marques MFV, Rocha FC, Soto NJ. Copolymerization of ethylene/diene with different metallocene catalysts. Z Nat. 2006;61b:1426–32.

    Google Scholar 

  32. Tynys A, Eilertsen JL, Seppälä JV, Rytter E. Copolymerization of 1,9-decadiene and propylene with binary and isolated metallocene systems. Polymer. 2007;48:2793–805.

    CAS  Google Scholar 

  33. Mehdiabadi S, Soares JBP. Production of ethylene/α-olefin/1,9-decadiene copolymers with complex microstructures using a two-stage polymerization process. Macromolecules. 2011;44:7926–39.

    CAS  Google Scholar 

  34. Lavoie AR, Ho MH, Waymouth RM. Alternating stereospecific copolymerization of cyclopentene and ethylene with constrained geometry catalysts. Chem Commun. 2003;7:864–5.

    Google Scholar 

  35. Wang W, Fujiki M, Nomura K. Copolymerization of ethylene with cyclohexene (CHE) catalyzed by nonbridged half-titanocenes containing aryloxo ligand: notable effect of both cyclopentadienyl and anionic donor ligand for efficient CHE incorporation. J Am Chem Soc. 2005;127:4582–3.

    CAS  PubMed  Google Scholar 

  36. Okada T, Takeuchi D, Shishido A, Ikeda T, Osakada K. Isomerization polymerization of 4-alkylcyclopentenes catalyzed by Pd complexes: hydrocarbon polymers with isotactic-type stereochemistry and liquid-crystalline properties. J Am Chem Soc. 2009;131:10852–3.

    CAS  PubMed  Google Scholar 

  37. Keaton RJ, Jayaratne KC, Henningsen DA, Koterwas LA, Sita LR. Dramatic enhancement of activities for living Ziegler-Natta polymerizations mediated by “exposed” zirconium acetamidinate initiators: the isospecific living polymerization of vinylcyclohexane. J Am Chem Soc. 2001;123:6197–8.

    CAS  PubMed  Google Scholar 

  38. Nomura K, Itagaki K. Efficient Incorporation of vinylcyclohexane in ethylene/vinylcyclohexane copolymerization catalyzed by nonbridged half-titanocenes. Macromolecules. 2005;38:8121–3.

    CAS  Google Scholar 

  39. Grisi F, Pragliola S, Costabile C, Longo P. Polymerization of vinyl-cyclohexane in the presence of C 2, C 2v, and C s zirconocene-based catalysts. Polymer. 2006;47:1930–4.

    CAS  Google Scholar 

  40. Segal S, Yeori A, Shuster M, Rosenberg Y, Kol M. Isospecific polymerization of vinylcyclohexane by zirconium complexes of salan ligands. Macromolecules. 2008;41:1612–7.

    CAS  Google Scholar 

  41. Ochiai B, Ootani Y, Endo T. Controlled cyclopolymerization through quantitative 19-membered ring formation. J Am Chem Soc. 2008;130:10832–3.

    CAS  PubMed  Google Scholar 

  42. Shimomoto H, Kikuchi M, Aoyama J, Sakayoshi D, Itoh T, Ihara E. Cyclopolymerization of bis(diazocarbonyl) compounds leading to well-defined polymers essentially consisting of cyclic constitutional units. Macromolecules. 2016;49:8459–65.

    CAS  Google Scholar 

  43. Oike H, Mouri T, Tezuka Y, Fujiyama K. A cyclic macromonomer designed for a novel polymer network architecture having both covalent and physical linkages. Macromolecules. 2001;34:6229–34.

    CAS  Google Scholar 

  44. Kubo M, Hibino T, Tamura M, Uno T, Itoh T. Synthesis and copolymerization of cyclic macromonomer based on cyclic polystyrene: gel formation via chain threading. Macromolecules. 2002;35:5816–20.

    CAS  Google Scholar 

  45. Takeuchi D. Precise isomerization polymerization of alkenylcyclohexanes: stereoregular polymers containing six-membered rings along the polymer chain. J Am Chem Soc. 2011;133:11106–9.

    Google Scholar 

  46. Takeuchi D, Watanabe K, Sogo K, Osakada K. Polymerization of methylenecyclohexanes catalyzed by diimine-Pd complex. Polymers having trans- or cis-1,4- and trans-1,3-cyclohexylene groups. Organometallics. 2015;34:3007–11.

    CAS  Google Scholar 

  47. Takeuchi D. Stereo-controlled synthesis of polyolefins with cycloalkane groups by using transition metals. Polym J. 2012;44:919–28.

    CAS  Google Scholar 

  48. van Asselt R, Elsevier CJ, Smeets WJJ, Spek AL, Benedix R. Synthesis and characterization of rigid bidentate nitrogen ligands and some examples of coordination to divalent palladium. X-ray crystal structures of bis(p-tolylimino)acenaphthene and methylchloro[bis(o,o’-diisopropylphenylimino)acenaphthene]palladium(II). Recl Trav Chim Pays-Bas. 1994;113:88–98.

    Google Scholar 

  49. Rülke RE, Delis JGP, Groot AM, Elsevier CJ, van Leeuwen PWNM, Vrieze K, et al. Insertion reactions involving palladium comlpexes with nitrogen ligands I. Reactivity towards carbon monoxide of methylpalladium(II) complexes containing bidentate α-diimine ligands: crystal structures of four methylpalladium(II) and acylpalladium(II) complexes. J Organomet Chem. 1996;508:109–20.

    Google Scholar 

  50. Johnson LK, Killian CM, Brookhart M. New Pd(II)- and Ni(II)- based catalysts for polymerization of ethylene and α–olefins. J Am Chem Soc. 1995;117:6414–5.

    CAS  Google Scholar 

  51. Killian CM, Tempel DJ, Johnson LK, Brookhart M. Living polymerization of α-olefins using Ni(II)-α-diimine catalysts. synthesis of new block polymers based on α-olefins. J Am Chem Soc. 1996;118:11664–5.

    CAS  Google Scholar 

  52. Buschmann WE, Miller JS. Sources of naked divalent first-row metal ions: synthesis and characterization of [MII(NCMe)6]2+ (M = V, Cr, Mn, Fe, Co, Ni) salts of tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Chem Eur J. 1998;4:1731–7.

    CAS  Google Scholar 

  53. Brookhart M, Grant B, Volpe Jr AF. [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes. Organometallics. 1992;11:3920–2.

    CAS  Google Scholar 

  54. Nishida H, Takada N, Yoshimura M, Sonoda T, Kobayashi H. Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Highly liphophilic stable anionic agent for solvent-extraction of cations. Bull Chem Soc Jpn. 1984;57:2600–4.

    CAS  Google Scholar 

  55. Hayashi T, Iwamura H, Naito M, Matsumoto Y, Uozumi Y, Miki M, et al. Catalytic asymmetric reduction of allylic esters with formic acid catalyzed by palladium-MOP complexes. J Am Chem Soc. 1994;116:775–6.

    CAS  Google Scholar 

  56. Kawatsura M, Uozumi Y, Ogasawara M, Hayashi T. Palladium-catalyzed asymmetric reduction of racemic allylicesters with formic acid: effects of phosphine ligands onisomerization of π-allylpalladium intermediates and enantioselectivity. Tetrahedron. 2000;56:2247–57.

    CAS  Google Scholar 

  57. Becker DP, Flynn DL, A short synthesis of 1-azaadamantan-4-one and the 4r and 4s isomers of 4-amino-1-azaadamantane. Synthesis. 1992;1080–2.

    Google Scholar 

  58. Takeuchi D, Chiba Y, Takano S, Kurihara H, Kobayashi M, Osakada K. Ethylene polymerization catalyzed by dinickel complexes with a double-decker structure. Polym Chem. 2017;8:5112–9.

    CAS  Google Scholar 

  59. Gates DP, Svejda SA, Oñate E, Killian CM, Johnson LK, White PS, et al. Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules. 2000;33:2320–34.

    CAS  Google Scholar 

  60. Rodriguez BA, Delferro M, Marks TJ. Neutral bimetallic nickel(II) phenoxyiminato catalysts for highly branched polyethylenes and ethylene–norbornene copolymerizations. Organometallics. 2008;27:2166–8.

    CAS  Google Scholar 

  61. McCord EF, McLain SJ, Nelson LTJ, Ittel SD, Tempel D, Killian CM, et al. Analysis of α-olefin enchainment in poly(α-Olefins) produced with nickel and palladium α-diimine catalysts. Macromolecules. 2007;40:410–20.

    CAS  Google Scholar 

  62. Gol’dfarb YI, Belen’ki LI. Strain and reactivity in monocyclic systems. Russ Chem Rev. 1960;29:214–35.

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP2265012, 15H03814, and 17K19150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Takeuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, D., Nakamura, K., Tokura, Y. et al. Synthesis of polycyclic polyolefins by a Pd-catalyzed isomerization polymerization of vinylcycloalkanes. Polym J 52, 93–101 (2020). https://doi.org/10.1038/s41428-019-0260-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0260-x

Search

Quick links